用户: 广濑亚纪/NOTE2/Misha Verbitsky 0403430

1Introduction

是紧复流形, -主丛, 是椭圆曲线. 在本文中 是 Kähelr 流形.

2Principal elliptic fibrations

Positive elliptic fibrations: definition and examples

定义 2.1. Fibration is called positive if the pullback is exact, for some Kahler form on .

例 2.2. Regular Vaisman manifolds are principal elliptic fibrations.

Ample line bundle; 商空间与主丛. 主丛约化与商群.

注 2.3. A special case of the above example is a regular Hopf manifold . Regular Hopf manifold is obtained if one applies the construction of Example 2.2 to .

注 2.4. 在 [1, Topology of the total space] 中, 但那里 是底空间而 是全空间.

例 2.5. 同 Example 2.2 类似

Preferred Hermitian metrics

Blanchard’s Theorem 出自 [1, Theorem 1.7], 表达了当底空间是 Kahler 流形时, 全空间是 Kahler 当且仅当 .

Riemannian submersion 是关于主丛和 Riemann 度量的. 对于 Hermite 流形, 由于复线性型可由实部决定 (因为已经给出复结构), 故 Riemannian submersion 同样诱导了 Hermitian metric 的等距同构, 并且这个直和也是关于 Hermitian metric 的正交分解.

定义 2.6. Let be an elliptic curve, and a positive principal -fibration. Consider a Kahler metric on , such that the pullback of the corresponding Kahler form is exact. A Hermitian metric on is called preferred if is -invariant, and the projection is a Riemannian submersion.

Preferred Hermitian metrics 的存在性

3Stable bundle on Hermitian manifolds

Gauduchon metrics and stability

定义 3.1. Let be a Hermitian manifold, and its Hermitian form. We say that is a Gauduchon metric if .

这里的问题是, 的等价性.

The metrics on are called conformally eauivalent if for some positive .

定理 3.2. Let be a compact Hermitian manifold. Then there exists a unique Gauduchon metric which is conformally equivalent to .

证明. This is [2, Theorem 1.2.4].

定义 3.3. Let be a compact complex manifold equipped with a Gauduchon metric, and the corresponding Hermitian form. Consider a torsion-free coherent sheaf on . Denote by its determinant bundle. Pick a Hermitian metric on , and lete be the curvature of the associated Chern connection. We define the degree of as follows: This notion is independent from the choice of the metric .

Kahler 流形上就是由第一陈类定义的度. 非 Kahler 时不是拓扑不变量. 具体见 [2].

定义 3.4. Let be a non-zero torsion-free coherent sheaf on . Then is defined as The sheaf is called

stable if for all subsheaves , we have ;

semistable if for all subsheaves , we have ;

polystable if can be represented as a direct sum of stable coherent sheaves with the same slope.

注 3.5. Jordan-Holder filtratoins; Harder-Narasimhan filtrations. 具体见 [2].

Kobayashi-Hitchin correspondence

定义 3.6. Let be a holomorphic Hermitian vector bundle on a Hermitian manifold , and the curvature of its Chern connection . Let be dual Lefschetz operator. The connection is called Hermitian-Einstein (or Yang-Mills) if .

定理 3.7 (Kobayashi-Hitchin correspondence). Let be a holomorphic vector bundle on a compact complex manifold equipped with a Gauduchon metric. Then admits a Hermitian-Einstein connection if and only if is polystable. Moreover, the Hermitian-Einstein connection is unique.

4Hermitian-Einstein bundles on positive principal elliptic fibrations

Preferred metrics are Gauduchon

命题 4.1. Let be a positive elliptic fibration, and a preferred Hermitian metric. Then is Gauduchon.

证明. 是 Hermitian metric 的基本形式.

的分解实际上是它与 到以下三个子空间的投影的复合: 与第一个复合就是 , 与第三个复合就是 . 至于第二个, 由于 是正交分解, 故 在这为零. 这样 .

Primitive forms on positive principal elliptic fibrations

这里似乎有 typo, 应为 .

命题 4.2. Let be a positive principal elliptic fibration, , equipped with a preferred Hermitian metric, a Hermitian bundle with connection, and a closed -form. Assume that is primitive, that is . Then (这是个 1-形式) for any vertical tangent vector .

证明. Hermitian connection 就是 metric connection.

The Lubke-type positivity for Hermitian-Einstein bundles

定理 4.3. Let , be a positive principal elliptic fibration, equipped with a preferred Hermitian metric, a Hermitian-Einstein bundle on , and its curvature. Assume that . Then for any vertical tangent vector .

Complex subvarieties in positive principal elliptic fibrations

Equivariance of stable bundles

-Equivariant bundle 是纤维丛 使得:

-空间.

保持 的作用.

命题 4.4. Let be an elliptic curve, and , a positive principal -fibration, equipped with a preferred Hermitian metric. The universal covering acts on in a standard way. Consider a stable bundle on . Then is equipped with a natural holomorphic -equivariant structure.

证明. Hermitian-Einstein connection 的存在性来自于 Kobayashi-Hitchin correspondence Theorem 3.7.

上的垂直向量场.

5Line bundles on principal elliptic fibrations

平坦联络; monodromy of connection 是什么?

的全纯自同构群可视为 , 则 的作用是 的子群 (因为  ?)

命题 5.1. Let be an elliptic curve and a positive principal -fibration, . Consider any character . Then there exists a holomorphic line bundle on such that the correspondence is equal to .

6Structure theorem for stable bundles

Equivariant -action and the stable bundles

定理 6.1. Let be a positive principal elliptic fibration equipped a preferred Hermitian metric, and a stable holomorphic bundle on . Then , where is a line bundle on and a stable bundle on .

证明. 稳定则它的自同构都是单位映射的倍乘?

[1]

T.Höfer (1993) : Remarks on torus principal bundles

[2]

M.Lubke, A.Teleman(1995): The Kobayashi-Hitchin Correspondence.