设 A 是 n 级阵. 设 n 级阵 D 适合[ D ] i , j = { d i , 0 , i = j ; 其他 . 则= det ( A + D ) + det ( D ) + k = 1 ∑ n − 1 1 ⩽ j 1 < j 2 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) det ( D ( j 1 , … , j k ∣ j 1 , … , j k )) + det ( A ) .
设 A 的列 1 , 2 , … , n 分别是 b 1 ( 1 ) , b 2 ( 1 ) , … , b n ( 1 ) . 设 D 的列 1 , 2 , … , n 分别是 b 1 ( 0 ) , b 2 ( 0 ) , … , b n ( 0 ) . 则 A + D 的列 j 是b j ( 1 ) + b j ( 0 ) = b j ( 0 ) + b j ( 1 ) = c j = 0 ∑ 1 b j ( c j ) . 则, 由多线性, = = = = = = det ( A + D ) det [ c 1 = 0 ∑ 1 b 1 ( c 1 ) , c 2 = 0 ∑ 1 b 2 ( c 2 ) , … , c n = 0 ∑ 1 b n ( c n ) ] c 1 = 0 ∑ 1 det [ b 1 ( c 1 ) , c 2 = 0 ∑ 1 b 2 ( c 2 ) , … , c n = 0 ∑ 1 b n ( c n ) ] c 1 = 0 ∑ 1 c 2 = 0 ∑ 1 det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , c n = 0 ∑ 1 b n ( c n ) ] … c 1 = 0 ∑ 1 c 2 = 0 ∑ 1 ⋯ c n = 0 ∑ 1 det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] . 由加法的结合律与交换律, 我们可按任何方式, 任何次序求这些det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] 的和. 特别地, 我们可按 c 1 + c 2 + ⋯ + c n 分这些数为若干组, 求出一组的组和 (即一组的元的和), 再求这些组的组和的和. 因为 0 ⩽ c j ⩽ 1 , 故 0 ⩽ c 1 + c 2 + ⋯ + c n ⩽ n . 于是, 我们可分这些数为 n + 1 组: 适合 c 1 + c 2 + ⋯ + c n = 0 的项在一组; 适合 c 1 + c 2 + ⋯ + c n = 1 的项在一组; …… 适合 c 1 + c 2 + ⋯ + c n = n 的项在一组. 不难看出, 每一项在某一组里, 且每一项不能在二个不同的组里. 则= = = det ( A + D ) 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] k = 0 ∑ n 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = k ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] + 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = 0 ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] + k = 1 ∑ n − 1 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = k ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] + 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = n ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] .
不难看出, c 1 + c 2 + ⋯ + c n = 0 时, c 1 = c 2 = ⋯ = c n = 0 . 则0 ⩽ c 1 , c 2 , … , c n ⩽ 1 ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] = det [ b 1 ( 0 ) , b 2 ( 0 ) , … , b n ( 0 ) ] = det ( D ) .
不难看出, c 1 + c 2 + ⋯ + c n = n 时, c 1 = c 2 = ⋯ = c n = 1 . 则0 ⩽ c 1 , c 2 , … , c n ⩽ 1 ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] = det [ b 1 ( 1 ) , b 2 ( 1 ) , … , b n ( 1 ) ] = det ( A ) .
设正整数 k < n . 由 c 1 + c 2 + ⋯ + c n = k , 知在 c 1 , c 2 , … , c n 中, 有 k 个 1 与 n − k 个 0 . 设 c j 1 = c j 2 = ⋯ = c j k = 1 (其中, 1 ⩽ j 1 < j 2 < ⋯ < j k ⩽ n ), 且 c j k + 1 = ⋯ = c j n = 0 (其中, 1 ⩽ j k + 1 < ⋯ < j n ⩽ n ). 记 n 级阵B c 1 , … , c n = [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] . 注意, 当 ℓ > k , 且 i = j ℓ 时, [ B c 1 , … , c n ] i , j ℓ = 0 , 且 [ B c 1 , … , c n ] j ℓ , j ℓ = d j ℓ , 按列 j k + 1 展开 det ( B c 1 , … , c n ) , 有det ( B c 1 , … , c n ) = = ( − 1 ) j k + 1 + j k + 1 [ B c 1 , … , c n ] j k + 1 , j k + 1 det ( B c 1 , … , c n ( j k + 1 ∣ j k + 1 )) d j k + 1 det ( B c 1 , … , c n ( j k + 1 ∣ j k + 1 )) . 按列 j k + 2 − 1 展开 det ( B c 1 , … , c n ( j k + 1 ∣ j k + 1 )) , 有= = det ( B c 1 , … , c n ( j k + 1 ∣ j k + 1 )) ( − 1 ) j k + 2 − 1 + j k + 2 − 1 [ B c 1 , … , c n ] j k + 2 , j k + 2 det ( B c 1 , … , c n ( j k + 1 , j k + 2 ∣ j k + 1 , j k + 2 )) d j k + 2 det ( B c 1 , … , c n ( j k + 1 , j k + 2 ∣ j k + 1 , j k + 2 )) . 故det ( B c 1 , … , c n ) = d j k + 1 d j k + 2 det ( B c 1 , … , c n ( j k + 1 , j k + 2 ∣ j k + 1 , j k + 2 )) . …… 最后, 我们算出= = = det ( B c 1 , … , c n ) d j k + 1 d j k + 2 … d j n det ( B c 1 , … , c n ( j k + 1 , … , j n ∣ j k + 1 , … , j n )) det ( B c 1 , … , c n ( j k + 1 , … , j n ∣ j k + 1 , … , j n )) d j k + 1 d j k + 2 … d j n det ( A ( j 1 , … , j k j 1 , … , j k ) ) det ( D ( j 1 , … , j k ∣ j 1 , … , j k )) . 于是= 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = k ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] 1 ⩽ j 1 < j 2 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) det ( D ( j 1 , … , j k ∣ j 1 , … , j k )) .
综上, = = det ( A + D ) + 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = 0 ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] + k = 1 ∑ n − 1 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = k ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] + 0 ⩽ c 1 , c 2 , … , c n ⩽ 1 c 1 + c 2 + ⋯ + c n = n ∑ det [ b 1 ( c 1 ) , b 2 ( c 2 ) , … , b n ( c n ) ] + det ( D ) + k = 1 ∑ n − 1 1 ⩽ j 1 < j 2 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) det ( D ( j 1 , … , j k ∣ j 1 , … , j k )) + det ( A ) .
设 A 是 n 级阵. 设 x 是数. 则det ( x I n + A ) = x n + k = 1 ∑ n x n − k 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) .
注意, [ x I n ] i , j = { x , 0 , i = j ; 其他 . 故, 由上个例, = = = = det ( x I n + A ) + det ( x I n ) + k = 1 ∑ n − 1 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) det (( x I n ) ( j 1 , … , j k ∣ j 1 , … , j k )) + det ( A ) + x n + k = 1 ∑ n − 1 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) x n − k + det ( A ) + x n + k = 1 ∑ n − 1 x n − k 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) + x n − n 1 ⩽ j 1 < ⋯ < j n ⩽ n ∑ det ( A ( j 1 , … , j n j 1 , … , j n ) ) x n + k = 1 ∑ n x n − k 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) .
设正整数 m , n 适合 m ⩾ n . 设 A , B 分别是 m × n 与 n × m 阵. 设正整数 k ⩽ n . 由 Binet–Cauchy 公式的推广, = = = = 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( ( A B ) ( j 1 , … , j k j 1 , … , j k ) ) 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ det ( A ( i 1 , … , i k j 1 , … , j k ) ) det ( B ( j 1 , … , j k i 1 , … , i k ) ) 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ det ( B ( j 1 , … , j k i 1 , … , i k ) ) det ( A ( i 1 , … , i k j 1 , … , j k ) ) 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( B ( j 1 , … , j k i 1 , … , i k ) ) det ( A ( i 1 , … , i k j 1 , … , j k ) ) 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ det ( ( B A ) ( i 1 , … , i k i 1 , … , i k ) ) .
设正整数 m , n 适合 m ⩾ n . 设 A , B 分别是 m × n 与 n × m 阵. 设 x 是数. 则= = = = = = = = det ( x I m + A B ) x m + k = 1 ∑ m x m − k 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( ( A B ) ( j 1 , … , j k j 1 , … , j k ) ) + x m + k = 1 ∑ n x m − k 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( ( A B ) ( j 1 , … , j k j 1 , … , j k ) ) + k = n + 1 ∑ m x m − k 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( ( A B ) ( j 1 , … , j k j 1 , … , j k ) ) + x m + k = 1 ∑ n x m − k 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( ( A B ) ( j 1 , … , j k j 1 , … , j k ) ) + k = n + 1 ∑ m x m − k 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ 0 x m + k = 1 ∑ n x m − k 1 ⩽ j 1 < ⋯ < j k ⩽ m ∑ det ( ( A B ) ( j 1 , … , j k j 1 , … , j k ) ) x m − n x n + k = 1 ∑ n x m − n x n − k 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ det ( ( B A ) ( i 1 , … , i k i 1 , … , i k ) ) x m − n x n + x m − n k = 1 ∑ n x n − k 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ det ( ( B A ) ( i 1 , … , i k i 1 , … , i k ) ) x m − n ( x n + k = 1 ∑ n x n − k 1 ⩽ i 1 < ⋯ < i k ⩽ n ∑ det ( ( B A ) ( i 1 , … , i k i 1 , … , i k ) ) ) x m − n det ( x I n + B A ) . 特别地, 代 x 以数 1 , 有det ( I m + A B ) = det ( I n + B A ) .
设 a 1 , b 1 , a 2 , b 2 , … , a m , b m 是 2 m 个数. 作 m 级阵 C 如下: [ C ] i , j = { 1 + a i b i , a i b j , i = j ; 其他 . 我们计算 det ( C ) .
设 A = [ a 1 , a 2 , … , a m ] T , 且 B = [ b 1 , b 2 , … , b m ] . 则[ A B ] i , j = [ A ] i , 1 [ B ] 1 , j = a i b j . 由此, 不难看出, C = I m + A B . 故det ( C ) = = = = = det ( I m + A B ) det ( I 1 + B A ) [ I 1 + B A ] 1 , 1 [ I 1 ] 1 , 1 + [ B A ] 1 , 1 1 + b 1 a 1 + b 2 a 2 + ⋯ + b m a m .
我们当然也可用别的方法. 作 m + 1 级阵 G 如下: [ G ] i , j = ⎩ ⎨ ⎧ 1 , − a i , 0 , [ C ] i , j , i = j = m + 1 ; i < j = m + 1 ; m + 1 = i > j ; 其他 . 通俗地, G = ⎣ ⎡ 1 + a 1 b 1 a 2 b 1 ⋮ a m − 1 b 1 a m b 1 0 a 1 b 2 1 + a 2 b 2 ⋮ a m − 1 b 2 a m b 2 0 ⋯ ⋯ ⋯ ⋯ ⋯ a 1 b m − 1 a 2 b m − 1 ⋮ 1 + a m − 1 b m − 1 a m b m − 1 0 a 1 b m a 2 b m ⋮ a m − 1 b m 1 + a m b m 0 − a 1 − a 2 ⋮ − a m − 1 − a m 1 ⎦ ⎤ . 一方面, 按行 m + 1 展开, 有det ( G ) = ( − 1 ) m + 1 + m + 1 1 det ( G ( 1∣1 )) = det ( C ) . 另一方面, 我们加列 m + 1 的 b 1 倍于列 1 , 加列 m + 1 的 b 2 倍于列 2 , …… 加列 m + 1 的 b m 倍于列 m , 得 m + 1 级阵H = ⎣ ⎡ 1 0 ⋮ 0 0 b 1 0 1 ⋮ 0 0 b 2 ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋮ 1 0 b m − 1 0 0 ⋮ 0 1 b m − a 1 − a 2 ⋮ − a m − 1 − a m 1 ⎦ ⎤ . 则 det ( H ) = det ( G ) . 故 det ( C ) = det ( H ) .
我们加列 1 的 a 1 倍于列 m + 1 , 加列 1 的 a 2 倍于列 m + 1 , …… 加列 1 的 a m 倍于列 m + 1 , 得 m + 1 级阵J = ⎣ ⎡ 1 0 ⋮ 0 0 b 1 0 1 ⋮ 0 0 b 2 ⋯ ⋯ ⋯ ⋯ ⋯ 0 0 ⋮ 1 0 b m − 1 0 0 ⋮ 0 1 b m 0 0 ⋮ 0 0 1 + b 1 a 1 + b 2 a 2 + ⋯ + b m a m ⎦ ⎤ . 则 det ( J ) = det ( H ) . 故det ( C ) = det ( J ) = 1 + b 1 a 1 + b 2 a 2 + ⋯ + b m a m .
设 A 是 n 级阵. 则 AA 是有意义的, 且也是方阵. 我们写 A 2 = AA . 类似地, A 2 A 也是有意义的, 且也是方阵. 我们写 A 3 = A 2 A . 一般地, 对任何非负整数 m , 我们如下定义方阵 A 的 m 次方: A m = { I , A m − 1 A , m = 0 ; m ⩾ 1. 不难看出, A 1 = A 0 A = I A = A .
类似数的非负整数次方, 方阵的非负整数次方适合, 对任何方阵 A , 任何非负整数 ℓ , m ,
(1) A ℓ + m = A ℓ A m ;
(2) ( A ℓ ) m = A ℓ m .
我们用数学归纳法证明 (1) 与 (2).
(1) 作命题 P ( m ) : A ℓ + m = A ℓ A m . 我们的目标是, 对任何非负整数 m , P ( m ) 是对的.
P ( 0 ) 是对的, 因为 A ℓ + 0 = A ℓ = A ℓ I = A ℓ A 0 .
假定 P ( m ) 是对的. 我们由此证明, P ( m + 1 ) 也是对的. 注意, A ℓ + ( m + 1 ) = A ( ℓ + m ) + 1 = A ℓ + m A = ( A ℓ A m ) A = A ℓ ( A m A ) = A ℓ A m + 1 . 所以, P ( m + 1 ) 是对的. 由数学归纳法, 待证命题成立.
(2) 作命题 Q ( m ) : ( A ℓ ) m = A ℓ m . 我们的目标是, 对任何非负整数 m , Q ( m ) 是对的.
Q ( 0 ) 是对的, 因为 ( A ℓ ) 0 = I = A 0 = A ℓ 0 .
假定 Q ( m ) 是对的. 我们由此证明, Q ( m + 1 ) 也是对的. 注意, ( A ℓ ) m + 1 = ( A ℓ ) m A ℓ = A ℓ m A ℓ = A ℓ m + ℓ = A ℓ ( m + 1 ) . 所以, Q ( m + 1 ) 是对的. 由数学归纳法, 待证命题成立.
我们知道, 对任何数 x , y , 任何非负整数 m , 必 ( x y ) m = x m y m . 可是, 存在二个同级的方阵 A , B , 存在非负整数 m , 使 ( A B ) m = A m B m : 取 m = 2 , A = [ 1 0 1 1 ] , B = [ 1 1 0 1 ] . 不难算出A B = [ 2 1 1 1 ] , A 2 = [ 1 0 2 1 ] , B 2 = [ 1 2 0 1 ] . 则( A B ) 2 = [ 5 3 3 2 ] , A 2 B 2 = [ 5 2 2 1 ] .
不过, 若 A B = B A , 则我们仍有, 对任何非负整数 m , 必 ( A B ) m = A m B m . 为证明此事, 我们要作准备.
作命题 P ( m ) : B m A = A B m . (注意, A B m 是 A ( B m ) , 而不是 ( A B ) m ; 这就像 x y m 是 x ( y m ) , 而不是 ( x y ) m .) 我们用数学归纳法证明 P ( m ) .
P ( 0 ) 是对的, 因为 B 0 A = I A = A I = A B 0 .
假定 P ( m ) 是对的. 我们由此证明, P ( m + 1 ) 也是对的. 注意, B m + 1 A = = ( B m B ) A = B m ( B A ) = B m ( A B ) ( B m A ) B = ( A B m ) B = A ( B m B ) = A B m + 1 . 所以, P ( m + 1 ) 是对的. 由数学归纳法, 待证命题成立.
好的. 我们作好了准备.
作命题 Q ( m ) : ( A B ) m = A m B m . 我们的目标是, 对任何非负整数 m , Q ( m ) 是对的.
Q ( 0 ) 是对的, 因为 ( A B ) 0 = I = II = A 0 B 0 .
假定 Q ( m ) 是对的. 我们由此证明, Q ( m + 1 ) 也是对的. 注意, ( A B ) m + 1 = = ( A B ) m ( A B ) = ( A m B m ) ( A B ) = (( A m B m ) A ) B = ( A m ( B m A )) B ( A m ( A B m )) B = (( A m A ) B m ) B = A m + 1 ( B m B ) = A m + 1 B m + 1 . 所以, Q ( m + 1 ) 是对的. 由数学归纳法, 待证命题成立.
设 A 是方阵. 设 k 是数. 设 m 是非负整数. 可以用数学归纳法证明:
(1) ( k A ) m = k m A m . (用 ( k A ) ( ℓ B ) = ( k ℓ ) ( A B ) , 若 A , B 都是 n 级阵, 且 k , ℓ 是数.)
(2) det ( A m ) = ( det ( A ) ) m . (用 det ( A B ) = det ( A ) det ( B ) , 若 A , B 都是 n 级阵.)
(3) ( A m ) T = ( A T ) m . (用 ( B A ) T = A T B T , 若 A , B 都是 n 级阵; 见 “转置的性质”.)
(4) adj ( A m ) = ( adj ( A ) ) m . (用 adj ( B A ) = adj ( A ) adj ( B ) , 若 A , B 都是 n 级阵; 见 “古伴的性质 (3)”.)
请允许我留它们为您的习题.
设 A , B 是 n 级阵. 则存在跟 A , B 的元有关的数 d 0 , d 1 , … , d n , 使对任何数 x , 有det ( x A + B ) = k = 0 ∑ n d k x n − k = d 0 x n + d 1 x n − 1 + ⋯ + d n , 其中, d 0 = det ( A ) , 且 d n = det ( B ) .
作命题 P ( m ) : 对任何 m 级阵 A , B , 存在跟 A , B 的元有关的数 d 0 , d 1 , … , d m , 使对任何数 x , 有det ( x A + B ) = k = 0 ∑ m d k x m − k = d 0 x m + d 1 x m − 1 + ⋯ + d m , 其中, d 0 = det ( A ) , 且 d m = det ( B ) . 我们的目标是, 对任何非负整数 m , P ( m ) 是对的.
P ( 1 ) 是显然的: det ( x A + B ) = [ x A + B ] 1 , 1 = x [ A ] 1 , 1 + [ B ] 1 , 1 = det ( A ) x + det ( B ) .
假定 P ( m − 1 ) 是对的. 我们由此证明, P ( m ) 也是对的.
设 A , B 是 m 级阵. 则det ( x A + B ) = = i = 1 ∑ m ( − 1 ) i + 1 [ x A + B ] i , 1 det (( x A + B ) ( i ∣1 )) i = 1 ∑ m ( − 1 ) i + 1 ( x [ A ] i , 1 + [ B ] i , 1 ) det ( x A ( i ∣1 ) + B ( i ∣1 )) . A ( i ∣1 ) , B ( i ∣1 ) 是 m − 1 级阵. 由假定, 存在跟 A ( i ∣1 ) , B ( i ∣1 ) 的元有关的数 (从而也是跟 A , B 的元有关的数) c i , 0 , c i , 1 , … , c i , m − 1 , 使对任何数 x , 有det ( x A ( i ∣1 ) + B ( i ∣1 )) = ℓ = 0 ∑ m − 1 c i , ℓ x m − 1 − ℓ , 其中, c i , 0 = det ( A ( i ∣1 )) , 且 c i , m − 1 = det ( B ( i ∣1 )) . 为方便, 记 a i = ( − 1 ) i + 1 [ A ] i , 1 , 且 b i = ( − 1 ) i + 1 [ B ] i , 1 . 则 a i , b i 跟 A , B 的元有关. 则= = = = = = = = = det ( x A + B ) i = 1 ∑ m ( a i x + b i ) ℓ = 0 ∑ m − 1 c i , ℓ x m − 1 − ℓ i = 1 ∑ m ℓ = 0 ∑ m − 1 ( a i x + b i ) c i , ℓ x m − 1 − ℓ i = 1 ∑ m ℓ = 0 ∑ m − 1 ( a i c i , ℓ x m − ℓ + b i c i , ℓ x m − 1 − ℓ ) ℓ = 0 ∑ m − 1 i = 1 ∑ m ( a i c i , ℓ x m − ℓ + b i c i , ℓ x m − 1 − ℓ ) ℓ = 0 ∑ m − 1 i = 1 ∑ m a i c i , ℓ x m − ℓ + ℓ = 0 ∑ m − 1 i = 1 ∑ m b i c i , ℓ x m − 1 − ℓ + i = 1 ∑ m a i c i , 0 x m − 0 + ℓ = 1 ∑ m − 1 i = 1 ∑ m a i c i , ℓ x m − ℓ + ℓ = 0 ∑ m − 2 i = 1 ∑ m b i c i , ℓ x m − 1 − ℓ + i = 1 ∑ m b i c i , m − 1 x m − 1 − ( m − 1 ) + i = 1 ∑ m a i c i , 0 x m + ℓ = 1 ∑ m − 1 i = 1 ∑ m a i c i , ℓ x m − ℓ + ℓ = 0 ∑ m − 2 i = 1 ∑ m b i c i , ( ℓ + 1 ) − 1 x m − ( ℓ + 1 ) + i = 1 ∑ m b i c i , m − 1 + i = 1 ∑ m a i c i , 0 x m + ℓ = 1 ∑ m − 1 i = 1 ∑ m a i c i , ℓ x m − ℓ + ℓ = 1 ∑ m − 1 i = 1 ∑ m b i c i , ℓ − 1 x m − ℓ + i = 1 ∑ m b i c i , m − 1 i = 1 ∑ m a i c i , 0 x m + ℓ = 1 ∑ m − 1 i = 1 ∑ m ( a i c i , ℓ + b i c i , ℓ − 1 ) x m − ℓ + i = 1 ∑ m b i c i , m − 1 . 记d k = ⎩ ⎨ ⎧ i = 1 ∑ m a i c i , 0 , i = 1 ∑ m ( a i c i , k + b i c i , k − 1 ) , i = 1 ∑ m b i c i , m − 1 , k = 0 ; 0 < k < m ; k = m . 则 d k 跟 A , B 的元有关, 且对任何数 x , 有det ( x A + B ) = k = 0 ∑ m d k x m − k = d 0 x m + d 1 x m − 1 + ⋯ + d m . 最后, 不难算出 d 0 = i = 1 ∑ m a i c i , 0 = i = 1 ∑ m ( − 1 ) i + 1 [ A ] i , 1 det ( A ( i ∣1 )) = det ( A ) , d m = i = 1 ∑ m b i c i , m − 1 = i = 1 ∑ m ( − 1 ) i + 1 [ B ] i , 1 det ( B ( i ∣1 )) = det ( B ) . 所以, P ( m ) 是对的. 由数学归纳法, 待证命题成立.
设 A 是 n 级阵. 则存在跟 A 的元有关的数 c 0 , c 1 , … , c n , 使对任何数 x , 有det ( x I − A ) = det ( x I + ( − A )) = k = 0 ∑ n c k x n − k = c 0 x n + c 1 x n − 1 + ⋯ + c n , 其中, c 0 = det ( I ) = 1 , 且 c n = det ( − A ) = ( − 1 ) n det ( A ) .
我们考虑 x I − A 的古伴 adj ( x I − A ) . 它的 ( i , j ) -元[ adj ( x I − A ) ] i , j = = ( − 1 ) j + i det (( x I − A ) ( j ∣ i )) ( − 1 ) j + i det ( x I ( j ∣ i ) + ( − A ) ( j ∣ i )) . 则有跟 A 的元有关的数 d i , j , k (k = 0 , 1 , … , n − 1 ), 使对任何数 x , 有det ( x I ( j ∣ i ) + ( − A ) ( j ∣ i )) = d i , j , 0 x n − 1 + d i , j , 1 x n − 2 + ⋯ + d i , j , n − 1 , 其中, d i , j , 0 = det ( I ( j ∣ i )) , 且 d i , j , n − 1 = det (( − A ) ( j ∣ i )) . 为方便, 记 b i , j , k = ( − 1 ) j + i d i , j , k . 则有跟 A 的元有关的数 b i , j , k (k = 0 , 1 , … , n − 1 ), 使对任何数 x , 有[ adj ( x I − A ) ] i , j = b i , j , 0 x n − 1 + b i , j , 1 x n − 2 + ⋯ + b i , j , n − 1 . 作 n 级阵 B k , 使 [ B k ] i , j = b i , j , k (k = 0 , 1 , … , n − 1 ). 则 B 0 , B 1 , … , B n − 1 的元全跟 A 的元有关, 且对任何数 x , 有adj ( x I − A ) = x n − 1 B 0 + x n − 2 B 1 + ⋯ + B n − 1 . 因为 [ B n − 1 ] i , j = b i , j , n − 1 = ( − 1 ) j + i d i , j , n − 1 = ( − 1 ) j + i det (( − A ) ( j ∣ i )) , 我们有 B n − 1 = adj ( − A ) .
因为( adj ( x I − A ) ) ( x I − A ) = = = det ( x I − A ) I ( c 0 x n + c 1 x n − 1 + ⋯ + c n ) I x n ( c 0 I ) + x n − 1 ( c 1 I ) + ⋯ + ( c n I ) , 我们有= ( x n − 1 B 0 + x n − 2 B 1 + ⋯ + x B n − 2 + B n − 1 ) ( x I − A ) x n ( c 0 I ) + x n − 1 ( c 1 I ) + ⋯ + x ( c n − 1 I ) + ( c n I ) . 上式的左侧是= = ( x n − 1 B 0 + x n − 2 B 1 + ⋯ + x B n − 2 + B n − 1 ) ( x I ) ( x n − 1 B 0 + ( x n − 1 B 0 + x n − 2 B 1 + ⋯ + x B n − 2 + B n − 1 ) ( − A ) x n B 0 + x n − 1 B 1 + ⋯ + x 2 B n − 2 + x B n − 1 x n B 0 − x n − 1 ( B 0 A ) − x n − 2 ( B 1 A ) − ⋯ − x ( B n − 2 A ) − B n − 1 A x n B 0 + x n − 1 ( B 1 − B 0 A ) + x n − 2 ( B 2 − B 1 A ) + ⋯ + x ( B n − 1 − B n − 2 A ) + ( − B n − 1 A ) . 比较左侧与右侧, 有B 0 B 1 − B 0 A B 2 − B 1 A B n − 1 − B n − 2 A − B n − 1 A = c 0 I , = c 1 I , = c 2 I , … , = c n − 1 I , = c n I . 则B 0 A n − 1 ( B 1 − B 0 A ) A n − 2 ( B 2 − B 1 A ) A n − 3 ( B n − 1 − B n − 2 A ) A 0 = ( c 0 I ) A n − 1 , = ( c 1 I ) A n − 2 , = ( c 2 I ) A n − 3 , … , = ( c n − 1 I ) A 0 . 则B 0 A n − 1 B 1 A n − 2 − B 0 A n − 1 B 2 A n − 3 − B 1 A n − 2 B n − 1 − B n − 2 A = c 0 A n − 1 , = c 1 A n − 2 , = c 2 A n − 3 , … , = c n − 1 I . 则B n − 1 = c 0 A n − 1 + c 1 A n − 2 + ⋯ + c n − 1 I .
由 B n − 1 = adj ( − A ) , 知adj ( − A ) = c 0 A n − 1 + c 1 A n − 2 + ⋯ + c n − 1 I .
由 − B n − 1 A = c n I , 知0 = = = B n − 1 A + c n I ( c 0 A n − 1 + c 1 A n − 2 + ⋯ + c n − 1 I ) A + c n I c 0 A n + c 1 A n − 1 + ⋯ + c n − 1 A + c n I .
最后, 由前面的例, 1 ⩽ k ⩽ n 时, c k = = = 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( ( − A ) ( j 1 , … , j k j 1 , … , j k ) ) 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ ( − 1 ) k det ( A ( j 1 , … , j k j 1 , … , j k ) ) ( − 1 ) k 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) ; 特别地, c n = ( − 1 ) n det ( A ) .
综上, 我们有:
设 A 是 n 级阵.
(1) 存在跟 A 的元有关的数 c 0 , c 1 , … , c n , 使对任何数 x , 有det ( x I − A ) = c 0 x n + c 1 x n − 1 + ⋯ + c n , 其中, c 0 = 1 , 且 c n = ( − 1 ) n det ( A ) . 更具体地, 1 ⩽ k ⩽ n 时, c k = ( − 1 ) k 1 ⩽ j 1 < ⋯ < j k ⩽ n ∑ det ( A ( j 1 , … , j k j 1 , … , j k ) ) .
(2) 用 A 的一些非负整数次方的数乘的和, 我们可如此表示 − A 的古伴: adj ( − A ) = c 0 A n − 1 + c 1 A n − 2 + ⋯ + c n − 1 I . 则 A 的古伴adj ( A ) = ( − 1 ) n − 1 adj ( − A ) = ( − 1 ) n − 1 ( c 0 A n − 1 + c 1 A n − 2 + ⋯ + c n − 1 I ) .
(3) (Cayley–Hamilton (kēili–hāmérten) 定理) c 0 A n + c 1 A n − 1 + ⋯ + c n I = 0.
我们验证 n = 2 时的情形. 为方便, 设 A = [ a c b d ] . 则 x I − A = [ x − a − c − b x − d ] . 直接计算, 有det ( x I − A ) = ( x − a ) ( x − d ) − ( − c ) ( − b ) = 1 x 2 + ( − ( a + d )) x + ( a d − c b ) . 注意, ( − 1 ) 2 det ( A ) = a d − c b , 且( − 1 ) 1 1 ⩽ j 1 ⩽ 2 ∑ det ( A ( j 1 j 1 ) ) = = ( − 1 ) ( det ( A ( 1 1 ) ) + det ( A ( 2 2 ) ) ) − ( a + d ) . 则 (1) 被验证.
因为 − A = [ − a − c − b − d ] , 我们有adj ( − A ) = [ − d c b − a ] = [ a − ( a + d ) c b d − ( a + d ) ] = 1 A + ( − ( a + d )) I . 类似地, 可验证 adj ( A ) = ( − 1 ) 2 − 1 adj ( − A ) = − ( 1 A + ( − ( a + d )) I ) ; 请允许我留它为您的习题. 则 (2) 被验证.
最后, = = = = 1 A 2 + ( − ( a + d )) A + ( a d − c b ) I 1 [ a c b d ] [ a c b d ] + ( − ( a + d )) [ a c b d ] + ( a d − c b ) [ 1 0 0 1 ] [ a 2 + b c c ( a + d ) b ( a + d ) b c + d 2 ] + [ − a 2 − a d − c ( a + d ) − b ( a + d ) − a d − d 2 ] + [ a d − b c 0 0 a d − b c ] [ 0 0 0 0 ] 0. 则 (3) 被验证.
设 A 是 n 级阵. 设 i 是不超过 n 的正整数. 按行 i 展开, 有det ( A ) = [ A ] i , i det ( A ( i ∣ i )) + 1 ⩽ ℓ ⩽ n ℓ = i ∑ ( − 1 ) i + ℓ [ A ] i , ℓ det ( A ( i ∣ ℓ )) . 注意, A 的列 i 对应 A ( i ∣ ℓ ) 的列 i − ρ ( i , ℓ ) . 则det ( A ( i ∣ ℓ )) = 1 ⩽ k ⩽ n k = i ∑ ( − 1 ) k − ρ ( k , i ) + i − ρ ( i , ℓ ) [ A ] k , i det ( A ( i , k ∣ ℓ , i )) . 所以 (注意, 对整数 p , q , 有 ( − 1 ) p + q = ( − 1 ) p − q ) = det ( A ) [ A ] i , i det ( A ( i ∣ i )) + 1 ⩽ k , ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ − ρ ( k , i ) + ρ ( i , ℓ ) [ A ] k , i [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) .
设 A 是反称阵. 则 [ A ] i , i = 0 , 且 [ A ] k , i = − [ A ] i , k . 注意, 1 − ρ ( k , i ) = ρ ( i , k ) . 则det ( A ) = 1 ⩽ k , ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) . 则det ( A ) = = = + 1 ⩽ k , ℓ ⩽ n k , ℓ = i k = ℓ ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) + 1 ⩽ k , ℓ ⩽ n k , ℓ = i k < ℓ ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) + 1 ⩽ k , ℓ ⩽ n k , ℓ = i k > ℓ ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) + 1 ⩽ k ⩽ n k = i ∑ [ A ] i , k 2 det ( A ( i , k ∣ i , k )) + 1 ⩽ k , ℓ ⩽ n k , ℓ = i k < ℓ ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) + 1 ⩽ k , ℓ ⩽ n k , ℓ = i k < ℓ ∑ ( − 1 ) ℓ + k + ρ ( i , ℓ ) + ρ ( i , k ) [ A ] i , ℓ [ A ] i , k det ( A ( i , ℓ ∣ i , k )) + 1 ⩽ k ⩽ n k = i ∑ [ A ] i , k 2 det ( A ( i , k ∣ i , k )) + 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) + 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , ℓ ∣ i , k )) . 注意, ( A ( i , ℓ ∣ i , k ) ) T = ( A T ) ( i , k ∣ i , ℓ ) = ( − A ) ( i , k ∣ i , ℓ ) = − ( A ( i , k ∣ i , ℓ )) . 则det ( A ( i , ℓ ∣ i , k )) = = = det ( A ( i , ℓ ∣ i , k ) ) T ) ( − 1 ) n − 2 det ( A ( i , k ∣ i , ℓ )) ( − 1 ) n det ( A ( i , k ∣ i , ℓ )) . ndalign* 则= det ( A ) + 1 ⩽ k ⩽ n k = i ∑ [ A ] i , k 2 det ( A ( i , k ∣ i , k )) + ( 1 + ( − 1 ) n ) 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) . 回想, 对反称阵 A , 有 det ( A ) = ( pf ( A ) ) 2 . 回想, pf ( A ) = 1 ⩽ j ⩽ n j = i ∑ ( − 1 ) i − 1 + j + ρ ( i , j ) [ A ] i , j pf ( A ( i , j ∣ i , j )) . 回想, ( x 1 + x 2 + ⋯ + x n ) 2 = ( x 1 2 + x 2 2 + ⋯ + x n 2 ) + 2 1 ⩽ k < ℓ ⩽ n ∑ x k x ℓ . 则= ( pf ( A ) ) 2 + 1 ⩽ k ⩽ n k = i ∑ [ A ] i , k 2 ( pf ( A ( i , k ∣ i , k )) ) 2 + 2 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ pf ( A ( i , k ∣ i , k )) pf ( A ( i , ℓ ∣ i , ℓ )) . 注意, det ( A ( i , k ∣ i , k )) = ( pf ( A ( i , k ∣ i , k )) ) 2 . 则= ( 1 + ( − 1 ) n ) 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) 2 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ pf ( A ( i , k ∣ i , k )) pf ( A ( i , ℓ ∣ i , ℓ )) . 设 n 是偶数. 则= 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ det ( A ( i , k ∣ i , ℓ )) 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ A ] i , k [ A ] i , ℓ pf ( A ( i , k ∣ i , k )) pf ( A ( i , ℓ ∣ i , ℓ )) .
设 1 ⩽ u < v ⩽ n , u = i , 且 v = i . 作 n 级反称阵 B , 其中, [ B ] p , q = ⎩ ⎨ ⎧ 1 , − 1 , 0 , [ A ] p , q , p = i , 且 q = u , 或 p = i , 且 q = v ; p = u , 且 q = i , 或 p = v , 且 q = i ; p = i , 且 q = u , v , 或 q = i , 且 p = u , v ; 其他 . 注意, A ( i ∣ i ) = B ( i ∣ i ) . 则 A ( i , k ∣ i , k ) = B ( i , k ∣ i , k ) , A ( i , ℓ ∣ i , ℓ ) = B ( i , ℓ ∣ i , ℓ ) , 且 A ( i , k ∣ i , ℓ ) = B ( i , k ∣ i , ℓ ) . 则, 由= 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ B ] i , k [ B ] i , ℓ det ( B ( i , k ∣ i , ℓ )) 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ B ] i , k [ B ] i , ℓ pf ( B ( i , k ∣ i , k )) pf ( B ( i , ℓ ∣ i , ℓ )) , 我们有= 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ B ] i , k [ B ] i , ℓ det ( A ( i , k ∣ i , ℓ )) 1 ⩽ k < ℓ ⩽ n k , ℓ = i ∑ ( − 1 ) k + ℓ + ρ ( i , k ) + ρ ( i , ℓ ) [ B ] i , k [ B ] i , ℓ pf ( A ( i , k ∣ i , k )) pf ( A ( i , ℓ ∣ i , ℓ )) . 注意, 若 k = u , 或 k = v , 或 ℓ = u , 或 ℓ = v , 则 [ B ] i , k [ B ] i , ℓ = 0 . 所以= ( − 1 ) u + v + ρ ( i , u ) + ρ ( i , v ) 1 ⋅ 1 ⋅ det ( A ( i , u ∣ i , v )) ( − 1 ) u + v + ρ ( i , u ) + ρ ( i , v ) 1 ⋅ 1 ⋅ pf ( A ( i , u ∣ i , u )) pf ( A ( i , v ∣ i , v )) , 即det ( A ( i , u ∣ i , v )) = pf ( A ( i , u ∣ i , u )) pf ( A ( i , v ∣ i , v )) .
回想, det ( A ( i , u ∣ i , v )) = ( − 1 ) n det ( A ( i , v ∣ i , u )) = det ( A ( i , v ∣ i , u )) . 则 1 ⩽ v < u ⩽ n , u = i , 且 v = i 时, det ( A ( i , u ∣ i , v )) = = = det ( A ( i , v ∣ i , u )) pf ( A ( i , v ∣ i , u )) pf ( A ( i , v ∣ i , v )) pf ( A ( i , u ∣ i , u )) pf ( A ( i , v ∣ i , v )) . 回想, det ( A ( i , u ∣ i , u )) = ( pf ( A ( i , u ∣ i , u )) ) 2 . 于是, 对不等于 i 的, 且不超过 n 的正整数 u , v , det ( A ( i , u ∣ i , v )) = pf ( A ( i , u ∣ i , u )) pf ( A ( i , v ∣ i , v )) . 所以, 若 j = i , = = = = = det ( A ( i ∣ j )) 1 ⩽ k ⩽ n k = i ∑ ( − 1 ) k − ρ ( k , i ) + i − ρ ( i , j ) [ A ] k , i det ( A ( i , k ∣ i , j )) 1 ⩽ k ⩽ n k = i ∑ ( − 1 ) k − ρ ( k , i ) + i − ρ ( i , j ) [ A ] k , i pf ( A ( i , k ∣ i , k )) pf ( A ( i , j ∣ i , j )) 1 ⩽ k ⩽ n k = i ∑ ( − 1 ) i + k + 1 − ρ ( i , k ) ( − 1 ) 1 − ρ ( i , j ) [ A ] i , k pf ( A ( i , k ∣ i , k )) pf ( A ( i , j ∣ i , j )) ( − 1 ) ρ ( j , i ) pf ( A ( i , j ∣ i , j )) 1 ⩽ k ⩽ n k = i ∑ ( − 1 ) i − 1 + k + ρ ( i , k ) [ A ] i , k pf ( A ( i , k ∣ i , k )) ( − 1 ) ρ ( j , i ) pf ( A ( i , j ∣ i , j )) pf ( A ) .
综上, 我们有:
设 A 是 2 m 级反称阵. 设 i 是不超过 2 m 的正整数. 设不超过 2 m 的正整数 k , ℓ 不等于 i . 则det ( A ( i , k ∣ i , ℓ )) = pf ( A ( i , k ∣ i , k )) pf ( A ( i , ℓ ∣ i , ℓ )) , 且det ( A ( i ∣ ℓ )) = ( − 1 ) ρ ( ℓ , i ) pf ( A ( i , ℓ ∣ i , ℓ )) pf ( A ) . 则[ adj ( A ) ] i , j = { ( − 1 ) ρ ( i , j ) ( − 1 ) i + j pf ( A ( i , j ∣ i , j )) pf ( A ) , 0 , i = j ; i = j .
设 A 是 2 m − 1 级反称阵. 作 2 m 级反称阵 B , 其中, [ B ] i , j = { 0 , [ A ] i , j , i = 2 m 或 j = 2 m ; 其他 . 则 B ( 2 m ∣ 2 m ) = A . 设 i , j 是不超过 2 m − 1 的正整数. 则det ( A ( j ∣ i )) = = = det ( B ( 2 m , j ∣ 2 m , i )) pf ( B ( 2 m , j ∣ 2 m , j )) pf ( B ( 2 m , i ∣ 2 m , i )) pf ( A ( j ∣ j )) pf ( A ( i ∣ i )) . 则[ adj ( A ) ] i , j = ( − 1 ) i pf ( A ( i ∣ i )) ⋅ ( − 1 ) j pf ( A ( j ∣ j )) . 于是, 若 ( 2 m − 1 ) × 1 阵 X 适合 [ X ] i , 1 = ( − 1 ) i pf ( A ( i ∣ i )) , 则 adj ( A ) = X X T .
设 A 是 2 m 级反称阵. 它的古伴 adj ( A ) 也是反称阵, 故 adj ( A ) 的 pfaffian 是有意义的. 则pf ( A T adj ( A ) A ) = pf ( adj ( A ) ) det ( A ) . 注意, A T adj ( A ) A = ( − A ) ( det ( A ) I ) = ( − det ( A ) ) A , 故 pf ( A T adj ( A ) A ) = ( − det ( A ) ) m pf ( A ) . 于是, 若 det ( A ) = 0 , pf ( adj ( A ) ) = ( − 1 ) m ( det ( A ) ) m − 1 pf ( A ) = ( − 1 ) m ( pf ( A ) ) 2 m − 1 . 若 det ( A ) = 0 , 则 pf ( A ) = 0 , 且由前面的结果, adj ( A ) = 0 . 则 pf ( adj ( A ) ) = 0 . 故上式仍是对的.
设一元运算 D 适合, 对任何 a , b , 必D ( a + b ) D ( a ⋅ b ) = D ( a ) + D ( b ) , = D ( a ) ⋅ b + a ⋅ D ( b ) .
由此, D ( 1 ) = D ( 1 ⋅ 1 ) = D ( 1 ) ⋅ 1 + 1 ⋅ D ( 1 ) = D ( 1 ) + D ( 1 ) . 则 D ( 1 ) = 0 .
注意, D ( 0 ) = D ( 0 + 0 ) = D ( 0 ) + D ( 0 ) . 则 D ( 0 ) = 0 . 则 D ( 0 ⋅ x ) = D ( 0 ) = 0 = 0 ⋅ D ( x ) .
注意, D ( 0 ) = D ( x + ( − x )) = D ( x ) + D ( − x ) . 则 D ( − x ) = − D ( x ) . 则 D ( ± x ) = ± D ( x ) . 则 D ( x ± y ) = D ( x ) + D ( ± y ) = D ( x ) ± D ( y ) . 于是, 若 s 1 , s 2 , … , s n 的每一个是 1 , 0 , 或 − 1 , 则D ( ℓ = 1 ∑ n s ℓ x ℓ ) = ℓ = 1 ∑ n s ℓ D ( x ℓ ) .
设 A 是 n 级阵, 我们研究, D ( det ( A ) ) 会是什么.
设 n = 1 . 则 det ( A ) = [ A ] 1 , 1 . 则 D ( det ( A ) ) = D ([ A ] 1 , 1 ) = det [ D ([ A ] 1 , 1 )] .
设 n = 2 . 则 det ( A ) = [ A ] 1 , 1 [ A ] 2 , 2 − [ A ] 2 , 1 [ A ] 1 , 2 . 则= = = = = D ( det ( A ) ) D ([ A ] 1 , 1 [ A ] 2 , 2 − [ A ] 2 , 1 [ A ] 1 , 2 ) D ([ A ] 1 , 1 [ A ] 2 , 2 ) − D ([ A ] 2 , 1 [ A ] 1 , 2 ) ( D ([ A ] 1 , 1 ) [ A ] 2 , 2 + [ A ] 1 , 1 D ([ A ] 2 , 2 )) − ( D ([ A ] 2 , 1 ) [ A ] 1 , 2 + [ A ] 2 , 1 D ([ A ] 1 , 2 )) ( D ([ A ] 1 , 1 ) [ A ] 2 , 2 − [ A ] 2 , 1 D ([ A ] 1 , 2 )) + ([ A ] 1 , 1 D ([ A ] 2 , 2 ) − D ([ A ] 2 , 1 ) [ A ] 1 , 2 ) det [ D ([ A ] 1 , 1 ) D ([ A ] 2 , 1 ) [ A ] 1 , 2 [ A ] 2 , 2 ] + det [ [ A ] 1 , 1 [ A ] 2 , 1 D ([ A ] 1 , 2 ) D ([ A ] 2 , 2 ) ] .
设 n = 3 . 则det ( A ) = + [ A ] 1 , 1 det [ [ A ] 2 , 2 [ A ] 3 , 2 [ A ] 2 , 3 [ A ] 3 , 3 ] − [ A ] 2 , 1 det [ [ A ] 1 , 2 [ A ] 3 , 2 [ A ] 1 , 3 [ A ] 3 , 3 ] + [ A ] 3 , 1 det [ [ A ] 1 , 2 [ A ] 2 , 2 [ A ] 1 , 3 [ A ] 2 , 3 ] . 则= = = D ( det ( A ) ) + D ([ A ] 1 , 1 ) det [ [ A ] 2 , 2 [ A ] 3 , 2 [ A ] 2 , 3 [ A ] 3 , 3 ] + [ A ] 1 , 1 D ( det [ [ A ] 2 , 2 [ A ] 3 , 2 [ A ] 2 , 3 [ A ] 3 , 3 ] ) − D ([ A ] 2 , 1 ) det [ [ A ] 1 , 2 [ A ] 3 , 2 [ A ] 1 , 3 [ A ] 3 , 3 ] − [ A ] 2 , 1 D ( det [ [ A ] 1 , 2 [ A ] 3 , 2 [ A ] 1 , 3 [ A ] 3 , 3 ] ) + D ([ A ] 3 , 1 ) det [ [ A ] 1 , 2 [ A ] 2 , 2 [ A ] 1 , 3 [ A ] 2 , 3 ] + [ A ] 3 , 1 D ( det [ [ A ] 1 , 2 [ A ] 2 , 2 [ A ] 1 , 3 [ A ] 2 , 3 ] ) + D ([ A ] 1 , 1 ) det [ [ A ] 2 , 2 [ A ] 3 , 2 [ A ] 2 , 3 [ A ] 3 , 3 ] + [ A ] 1 , 1 det [ D ([ A ] 2 , 2 ) D ([ A ] 3 , 2 ) [ A ] 2 , 3 [ A ] 3 , 3 ] + [ A ] 1 , 1 det [ [ A ] 2 , 2 [ A ] 3 , 2 D ([ A ] 2 , 3 ) D ([ A ] 3 , 3 ) ] − D ([ A ] 2 , 1 ) det [ [ A ] 1 , 2 [ A ] 3 , 2 [ A ] 1 , 3 [ A ] 3 , 3 ] − [ A ] 2 , 1 det [ D ([ A ] 1 , 2 ) D ([ A ] 3 , 2 ) [ A ] 1 , 3 [ A ] 3 , 3 ] − [ A ] 2 , 1 det [ [ A ] 1 , 2 [ A ] 3 , 2 D ([ A ] 1 , 3 ) D ([ A ] 3 , 3 ) ] + D ([ A ] 3 , 1 ) det [ [ A ] 1 , 2 [ A ] 2 , 2 [ A ] 1 , 3 [ A ] 2 , 3 ] + [ A ] 3 , 1 det [ D ([ A ] 1 , 2 ) D ([ A ] 2 , 2 ) [ A ] 1 , 3 [ A ] 2 , 3 ] + [ A ] 3 , 1 det [ [ A ] 1 , 2 [ A ] 2 , 2 D ([ A ] 1 , 3 ) D ([ A ] 2 , 3 ) ] + det ⎣ ⎡ D ([ A ] 1 , 1 ) D ([ A ] 2 , 1 ) D ([ A ] 3 , 1 ) [ A ] 1 , 2 [ A ] 2 , 2 [ A ] 3 , 2 [ A ] 1 , 3 [ A ] 2 , 3 [ A ] 3 , 3 ⎦ ⎤ + det ⎣ ⎡ [ A ] 1 , 1 [ A ] 2 , 1 [ A ] 3 , 1 D ([ A ] 1 , 2 ) D ([ A ] 2 , 2 ) D ([ A ] 3 , 2 ) [ A ] 1 , 3 [ A ] 2 , 3 [ A ] 3 , 3 ⎦ ⎤ + det ⎣ ⎡ [ A ] 1 , 1 [ A ] 2 , 1 [ A ] 3 , 1 [ A ] 1 , 2 [ A ] 2 , 2 [ A ] 3 , 2 D ([ A ] 1 , 3 ) D ([ A ] 2 , 3 ) D ([ A ] 3 , 3 ) ⎦ ⎤ .
我们想, 我们或许知道 D ( det ( A ) ) 了. 为方便, 我们作这样的记号: 若 B 是 m × n 阵, 且 ℓ 是正整数, 则 D ℓ ( B ) 也是 m × n 阵, 其中, [ D ℓ ( B ) ] i , j = { D ([ B ] i , j ) , [ B ] i , j , j = ℓ ; 其他 .
作命题 P ( n ) : 对任何 n 级阵 A , D ( det ( A ) ) = ℓ = 1 ∑ n det ( D ℓ ( A )) . 我们的目标是, 对任何正整数 n , P ( n ) 是对的.
P ( 1 ) 与 P ( 2 ) 是对的.
假定 P ( n − 1 ) 是对的. 我们由此证明, P ( n ) 也是对的.
注意, = = = = D ( det ( A ) ) D ( i = 1 ∑ n ( − 1 ) i + 1 [ A ] i , 1 det ( A ( i ∣1 )) ) i = 1 ∑ n ( − 1 ) i + 1 D ([ A ] i , 1 det ( A ( i ∣1 )) ) i = 1 ∑ n ( − 1 ) i + 1 ( D ([ A ] i , 1 ) det ( A ( i ∣1 )) + [ A ] i , 1 D ( det ( A ( i ∣1 )) )) i = 1 ∑ n ( − 1 ) i + 1 D ([ A ] i , 1 ) det ( A ( i ∣1 )) + i = 1 ∑ n ( − 1 ) i + 1 [ A ] i , 1 D ( det ( A ( i ∣1 )) ) . 注意, 既然 A 与 D 1 ( A ) 的列 j 相同 (若 j = 1 ), 则 A ( i ∣1 ) = ( D 1 ( A )) ( i ∣1 ) . 则= = i = 1 ∑ n ( − 1 ) i + 1 D ([ A ] i , 1 ) det ( A ( i ∣1 )) i = 1 ∑ n ( − 1 ) i + 1 D ([ A ] i , 1 ) det (( D 1 ( A )) ( i ∣1 )) det ( D 1 ( A )) .
由假定, D ( det ( A ( i ∣1 )) ) = v = 1 ∑ n − 1 det ( D v ( A ( i ∣1 ))) . 注意, D v ( A ( i ∣1 )) = ( D v + 1 ( A )) ( i ∣1 ) . 则D ( det ( A ( i ∣1 )) ) = v = 1 ∑ n − 1 det (( D v + 1 ( A )) ( i ∣1 )) = ℓ = 2 ∑ n det (( D ℓ ( A )) ( i ∣1 )) . 注意, 当 ℓ = 1 时, [ D ℓ ( A ) ] i , 1 = [ A ] i , 1 . 则= = = = i = 1 ∑ n ( − 1 ) i + 1 [ A ] i , 1 D ( det ( A ( i ∣1 )) ) i = 1 ∑ n ( − 1 ) i + 1 [ D ℓ ( A ) ] i , 1 ℓ = 2 ∑ n det (( D ℓ ( A )) ( i ∣1 )) i = 1 ∑ n ℓ = 2 ∑ n ( − 1 ) i + 1 [ D ℓ ( A ) ] i , 1 det (( D ℓ ( A )) ( i ∣1 )) ℓ = 2 ∑ n i = 1 ∑ n ( − 1 ) i + 1 [ D ℓ ( A ) ] i , 1 det (( D ℓ ( A )) ( i ∣1 )) ℓ = 2 ∑ n det ( D ℓ ( A )) . 综上, D ( det ( A ) ) = det ( D 1 ( A )) + ℓ = 2 ∑ n det ( D ℓ ( A )) = ℓ = 1 ∑ n det ( D ℓ ( A )) . 所以, P ( n ) 是对的. 由数学归纳法, 待证命题成立.
注意, 既然 A 与 D ℓ ( A ) 的列 j 相同 (若 j = ℓ ), 则 A ( i ∣ ℓ ) = ( D ℓ ( A )) ( i ∣ ℓ ) . 并且, [ D ℓ ( A ) ] i , ℓ = D ([ A ] i , ℓ ) . 则D ( det ( A ) ) = = = = = ℓ = 1 ∑ n det ( D ℓ ( A )) ℓ = 1 ∑ n i = 1 ∑ n ( − 1 ) i + ℓ [ D ℓ ( A ) ] i , ℓ det (( D ℓ ( A )) ( i ∣ ℓ )) ℓ = 1 ∑ n i = 1 ∑ n ( − 1 ) i + ℓ D ([ A ] i , ℓ ) det ( A ( i ∣ ℓ )) ℓ = 1 ∑ n i = 1 ∑ n ( − 1 ) i + ℓ det ( A ( i ∣ ℓ )) D ([ A ] i , ℓ ) ℓ = 1 ∑ n i = 1 ∑ n [ adj ( A ) ] ℓ , i D ([ A ] i , ℓ ) . 为方便, 我们作这样的记号: 若 B 是 m × n 阵, 则 D c ( B ) 也是 m × n 阵, 其中, [ D c ( B ) ] i , j = D ([ B ] i , j ) . 则D ( det ( A ) ) = ℓ = 1 ∑ n [ adj ( A ) D c ( A ) ] ℓ , ℓ .
最后, 我们再引入方阵的 trace: 若 A 是 n 级阵, 则 A 的 trace (chuìsi) tr ( A ) = k = 1 ∑ n [ A ] k , k . 则D ( det ( A ) ) = tr ( adj ( A ) D c ( A )) .
设 A 是 n 级反称阵. 我们求 D ( pf ( A ) ) .
设 n = 1 . 则 pf ( A ) = 0 . 则 D ( pf ( A ) ) = 0 .
设 n = 2 . 则 pf ( A ) = [ A ] 1 , 2 . 则 D ( pf ( A ) ) = D ([ A ] 1 , 2 ) .
设 n = 3 . 则 pf ( A ) = 0 . 则 D ( pf ( A ) ) = 0 .
设 n = 4 . 则 pf ( A ) = [ A ] 1 , 2 [ A ] 3 , 4 − [ A ] 1 , 3 [ A ] 2 , 4 + [ A ] 1 , 4 [ A ] 2 , 3 . 则= = D ( pf ( A ) ) + D ([ A ] 1 , 2 ) [ A ] 3 , 4 + [ A ] 1 , 2 D ([ A ] 3 , 4 ) − D ([ A ] 1 , 3 ) [ A ] 2 , 4 − [ A ] 1 , 3 D ([ A ] 2 , 4 ) + D ([ A ] 1 , 4 ) [ A ] 2 , 3 + [ A ] 1 , 4 D ([ A ] 2 , 3 ) + D ([ A ] 1 , 2 ) [ A ] 3 , 4 − D ([ A ] 1 , 3 ) [ A ] 2 , 4 + D ([ A ] 1 , 4 ) [ A ] 2 , 3 + D ([ A ] 2 , 3 ) [ A ] 1 , 4 − D ([ A ] 2 , 4 ) [ A ] 1 , 3 + D ([ A ] 3 , 4 ) [ A ] 1 , 2 .
作命题 P ( n ) : 对任何 n 级反称阵 A , D ( pf ( A ) ) = 1 ⩽ i < j ⩽ n ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) pf ( A ( i , j ∣ i , j )) . 再作命题 Q ( n ) : P ( n − 1 ) 与 P ( n ) 是对的. 我们用数学归纳法证明, 对任何大于 3 的正整数 n , Q ( n ) 是对的. 则对不低于 3 的正整数 n , P ( n ) 是对的.
P ( 3 ) 与 P ( 4 ) 显然地是对的. 则 Q ( 4 ) 是对的.
设 Q ( n − 1 ) 是对的. 则 P ( n − 2 ) 与 P ( n − 1 ) 是对的. 我们要证, Q ( n ) 是对的. 则我们要证, P ( n − 1 ) 与 P ( n ) 是对的. 于是, 若我们以 P ( n − 2 ) 与 P ( n − 1 ) 证, P ( n ) 是对的, 则 Q ( n ) 是对的.
设 n > 4 . 则= = = = D ( pf ( A ) ) D ( 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ [ A ] 1 , ℓ pf ( A ( 1 , ℓ ∣ 1 , ℓ )) ) 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ D ([ A ] 1 , ℓ pf ( A ( 1 , ℓ ∣ 1 , ℓ )) ) 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ ( D ([ A ] 1 , ℓ ) pf ( A ( 1 , ℓ ∣ 1 , ℓ )) + [ A ] 1 , ℓ D ( pf ( A ( 1 , ℓ ∣ 1 , ℓ )) )) + 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ D ([ A ] 1 , ℓ ) pf ( A ( 1 , ℓ ∣ 1 , ℓ )) + 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ [ A ] 1 , ℓ D ( pf ( A ( 1 , ℓ ∣ 1 , ℓ )) ) . 注意, [ A ] i , j 在 A ( 1 , ℓ ∣ 1 , ℓ ) 的位置是行 i − ρ ( i , 1 ) − ρ ( i , ℓ ) , 列 j − ρ ( j , 1 ) − ρ ( j , ℓ ) . (回想, 若 i ⩾ j , 则 ρ ( i , j ) = 1 , 且若 i < j , 则 ρ ( i , j ) = 0 .) 由假定, = = = = D ( pf ( A ( 1 , ℓ ∣ 1 , ℓ )) ) 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) i − 1 − ρ ( i , ℓ ) + j − 1 − ρ ( j , ℓ ) − 1 D ([ A ] i , j ) pf ( A ( 1 , ℓ , i , j ∣ 1 , ℓ , i , j )) 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) i − 1 + ( ρ ( ℓ , i ) − 1 ) + j − 1 + ( ρ ( ℓ , j ) − 1 ) − 1 D ([ A ] i , j ) pf ( A ( 1 , ℓ , i , j ∣ 1 , ℓ , i , j )) 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) ( i + j − 1 ) − 1 − ρ ( ℓ , i ) + 1 − 1 − ρ ( ℓ , j ) + 1 D ([ A ] i , j ) pf ( A ( 1 , ℓ , i , j ∣ 1 , ℓ , i , j )) 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) ( i + j − 1 ) − ρ ( ℓ , i ) − ρ ( ℓ , j ) D ([ A ] i , j ) pf ( A ( 1 , ℓ , i , j ∣ 1 , ℓ , i , j )) . 为方便, 我们简单地写 A ( 1 , ℓ , i , j ∣ 1 , ℓ , i , j ) 为 A 1 , ℓ , i , j . 则= = = = = = 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ [ A ] 1 , ℓ D ( pf ( A ( 1 , ℓ ∣ 1 , ℓ )) ) 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ [ A ] 1 , ℓ 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) ( i + j − 1 ) − ρ ( ℓ , i ) − ρ ( ℓ , j ) D ([ A ] i , j ) pf ( A 1 , ℓ , i , j ) 2 ⩽ ℓ ⩽ n ∑ 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) ℓ [ A ] 1 , ℓ ( − 1 ) ( i + j − 1 ) − ρ ( ℓ , i ) − ρ ( ℓ , j ) D ([ A ] i , j ) pf ( A 1 , ℓ , i , j ) 2 ⩽ ℓ ⩽ n ∑ 2 ⩽ i < j ⩽ n i , j = ℓ ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) ( − 1 ) ℓ − ρ ( ℓ , i ) − ρ ( ℓ , j ) [ A ] 1 , ℓ pf ( A 1 , ℓ , i , j ) 2 ⩽ i < j ⩽ n ∑ 2 ⩽ ℓ ⩽ n ℓ = i , j ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) ( − 1 ) ℓ − ρ ( ℓ , i ) − ρ ( ℓ , j ) [ A ] 1 , ℓ pf ( A 1 , ℓ , i , j ) 2 ⩽ i < j ⩽ n ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) 2 ⩽ ℓ ⩽ n ℓ = i , j ∑ ( − 1 ) ℓ − ρ ( ℓ , i ) − ρ ( ℓ , j ) [ A ] 1 , ℓ pf ( A 1 , ℓ , i , j ) 1 ⩽ i < j ⩽ n i ⩾ 2 ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) pf ( A ( i , j ∣ i , j )) . 注意, = 2 ⩽ ℓ ⩽ n ∑ ( − 1 ) ℓ D ([ A ] 1 , ℓ ) pf ( A ( 1 , ℓ ∣ 1 , ℓ )) 1 ⩽ i < j ⩽ n i = 1 ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) pf ( A ( i , j ∣ i , j )) . 综上, D ( pf ( A ) ) = = + 1 ⩽ i < j ⩽ n i = 1 ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) pf ( A ( i , j ∣ i , j )) + 1 ⩽ i < j ⩽ n i ⩾ 2 ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) pf ( A ( i , j ∣ i , j )) 1 ⩽ i < j ⩽ n ∑ ( − 1 ) i + j − 1 D ([ A ] i , j ) pf ( A ( i , j ∣ i , j )) . 所以, P ( n ) 是对的. 则 Q ( n ) 是对的. 由数学归纳法, 待证命题成立.
回想, 若 A 是 n 级阵, 则 A 的 trace tr ( A ) = k = 1 ∑ n [ A ] k , k . 我们说, trace 也是方阵的一个属性, 就像行列式是方阵的一个属性那样.
设 A , B 是 n 级阵. 设 s 是数. 设 C 是 n × m 阵, 且 D 是 m × n 阵. 则:
(1) tr ( A + B ) = tr ( A ) + tr ( B ) . 注意, tr ( A + B ) = = = = k = 1 ∑ n [ A + B ] k , k k = 1 ∑ n ([ A ] k , k + [ B ] k , k ) k = 1 ∑ n [ A ] k , k + k = 1 ∑ n [ B ] k , k tr ( A ) + tr ( B ) .
(2) tr ( s A ) = s tr ( A ) . 注意, tr ( s A ) = k = 1 ∑ n [ s A ] k , k = k = 1 ∑ n s [ A ] k , k = s k = 1 ∑ n [ A ] k , k = s tr ( A ) .
(3) tr ( A T ) = tr ( A ) . 注意, tr ( A T ) = k = 1 ∑ n [ A T ] k , k = k = 1 ∑ n [ A ] k , k = tr ( A ) .
(4) tr ( C D ) = tr ( D C ) . 注意, tr ( C D ) = = = = = = k = 1 ∑ n [ C D ] k , k k = 1 ∑ n ℓ = 1 ∑ m [ C ] k , ℓ [ D ] ℓ , k ℓ = 1 ∑ m k = 1 ∑ n [ C ] k , ℓ [ D ] ℓ , k ℓ = 1 ∑ m k = 1 ∑ n [ D ] ℓ , k [ C ] k , ℓ ℓ = 1 ∑ m [ D C ] ℓ , ℓ tr ( D C ) . (其实, 此事是例 C.44.3 的一个特别的情形.)
值得提, 当 n ⩾ 2 时, tr ( A B ) = tr ( A ) tr ( B ) 一般不是对的. 为此, 设 A , B 是这样的 n 级阵: [ A ] i , j = { 1 , 0 , i = j = 1 ; 其他 , [ B ] i , j = { 1 , 0 , i = j = 2 ; 其他 . 可以验证, A B = 0 . 则 tr ( A B ) = 0 . 但是, tr ( A ) = 1 = tr ( B ) .
设 A 是 n 级阵. 则存在 n 级阵 B , 使 A B = det ( A ) I n = B A .
我们知道, A adj ( A ) = det ( A ) I n = adj ( A ) A . 若 adj ( A ) = 0 , 我们取 B 为 adj ( A ) .
以下, 我们设 adj ( A ) = 0 . 注意, 此时, n > 1 (注意, 若 n = 1 , 则 A 的古伴总为 I 1 ), 且 det ( A ) = 0 .
若 A = 0 , 我们可取 B 为任何非零的 n 级阵 (如 I n ).
以下, 我们设 adj ( A ) = 0 , 且 A = 0 . 注意, 此时, n > 2 (注意, 若 n = 2 , 则 A 的古伴不为 0 , 除非 A = 0 ).
我们说, 存在小于 n − 1 的正整数 r , 使 A 有行列式非零的 r 级子阵, 且 A 没有行列式非零的 r + 1 级子阵. 设 C = A ( j 1 , j 2 , … , j r + 1 i 1 , i 2 , … , i r + 1 ) (其中, i 1 < i 2 < ⋯ < i r + 1 , 且 j 1 < j 2 < ⋯ < j r + 1 ; 则 [ C ] s , t = [ A ] i s , j t ) 是 A 的一个 r + 1 级子阵, 且 C 有行列式非零的 r 级子阵 (此 r 级子阵当然是 A 的行列式非零的 r 级子阵). 则 adj ( C ) = 0 , 且 C adj ( C ) = 0 = adj ( C ) C .
作 n 级阵 B , 使[ B ] i , j = { [ adj ( C ) ] t , s , 0 , 若 i 等于某 j t , 且 j 等于某 i s ; 其他 . 则 B = 0 (因为 adj ( C ) 的元都是 B 的元, 且 adj ( C ) = 0 ). 我们说明, A B = 0 = det ( A ) I n , 且 B A = 0 = det ( A ) I n .
注意, [ A B ] i , j = = = = 1 ⩽ ℓ ⩽ n ∑ [ A ] i , ℓ [ B ] ℓ , j 1 ⩽ ℓ ⩽ n ℓ 等于某 j t ∑ [ A ] i , ℓ [ B ] ℓ , j + 1 ⩽ ℓ ⩽ n ℓ 不等于任何 j t ∑ [ A ] i , ℓ [ B ] ℓ , j 1 ⩽ t ⩽ r + 1 ∑ [ A ] i , j t [ B ] j t , j + 1 ⩽ ℓ ⩽ n ℓ 不等于任何 j t ∑ [ A ] i , ℓ 0 1 ⩽ t ⩽ r + 1 ∑ [ A ] i , j t [ B ] j t , j . 若 j 不等于任何 i s , 则 [ B ] j t , j = 0 . 则 [ A B ] i , j = 0 . 若 j 等于某 i s , 则[ A B ] i , i s = = 1 ⩽ t ⩽ r + 1 ∑ [ A ] i , j t [ B ] j t , i s 1 ⩽ t ⩽ r + 1 ∑ [ A ] i , j t [ adj ( C ) ] t , s . 若 i 等于某 i k , 则[ A B ] i k , i s = = = = = 1 ⩽ t ⩽ r + 1 ∑ [ A ] i k , j t [ adj ( C ) ] t , s 1 ⩽ t ⩽ r + 1 ∑ [ C ] k , t [ adj ( C ) ] t , s [ C adj ( C ) ] k , s [ 0 ] k , s 0. 若 i 不等于任何 i k , 则[ A B ] i , i s = = 1 ⩽ t ⩽ r + 1 ∑ [ A ] i , j t [ adj ( C ) ] t , s 1 ⩽ t ⩽ r + 1 ∑ [ A ] i , j t ( − 1 ) s + t det ( C ( s ∣ t )) . 作 r + 1 级阵 D , 使[ D ] u , v = { [ A ] i , j v , [ C ] u , v , u = s ; 其他 . 则 C 的行 u 与 D 的行 u 相等 (若 u = s ). 则 C ( s ∣ t ) = D ( s ∣ t ) , 且 [ A ] i , j t = [ D ] s , t . 则 [ A B ] i , i s = det ( D ) .
设 i 在 i 1 , … , i s − 1 , i , i s + 1 , … , i r + 1 中是第 z 小的数. 若 z = s , 则 D 就是 A 的 r + 1 级子阵 F = A ( j 1 , j 2 , … , j r + 1 i 1 , … , i s − 1 , i , i s + 1 , … , i r + 1 ) . 注意, det ( F ) = 0 . 则 det ( D ) = 0 . 若 z > s , 则我们分别地使 D 的行 s 与在行 s 的下面的 z − s 行, 行 i s + 1 , … , 行 i z , 交换位置, 变 D 为 F . 则 det ( D ) = ( − 1 ) z − s det ( F ) = 0 . 若 z < s , 则我们分别地使 D 的行 s 与在行 s 的上面的 s − z 行, 行 i s − 1 , … , 行 i z , 交换位置, 变 D 为 F . 则 det ( D ) = ( − 1 ) s − z det ( F ) = 0 . 则 [ A B ] i , i s = det ( D ) = 0 .
综上, 既然 A B 的每一个元都是 0 , 则 A B = 0 .
我们可几乎类似地证, B A = 0 . 当然, 我们也可这样作.
B A = 0 相当于 A T B T = 0 T = 0 . 且 A T 也没有行列式非零的 r + 1 级子阵. 注意, C T = A T ( i 1 , i 2 , … , i r + 1 j 1 , j 2 , … , j r + 1 ) 是 A T 的一个 r + 1 级子阵, 且 C T 有行列式非零的 r 级子阵 (此 r 级子阵当然是 A T 的行列式非零的 r 级子阵). 则 adj ( C T ) = 0 , 且 C T adj ( C T ) = 0 = adj ( C T ) C T .
我们类似地作 n 级阵 G , 使[ G ] i , j = { [ adj ( C T ) ] s , t , 0 , 若 i 等于某 i s , 且 j 等于某 j t ; 其他 . 则 G = B T . (注意, [ adj ( C T ) ] s , t = [ adj ( C ) ] t , s , 故 [ G ] i s , j t = [ B ] j t , i s . 在其他的情形, [ G ] i , j = 0 = [ B ] j , i .) 并且, 当然, G = 0 . 那么, 由前面的讨论, A T B T = 0 .