Let E→M be a smooth vector bundle of rank k. ThenΓ(T∗M⊗E)=Ω1(E)which is adjunction T∗M⊗E↔Hom(TM,E). If α∈Ω1(E), then α(X)∈Γ(E), ∀X∈X(M).
定义 13.1.1. A connection∇ on E is a R-linear map ∇:Γ(E)→Ω1(E)satisfying the Leibniz rule ∇(f⋅s)=df⊗s+f∇(s),∀f∈C∞(M),s∈Γ(E)
Properties:
(1)
∇ does not increase the support of a section, i.e. if U⊂M open and s∈Γ(E), s∣∣U≡0, then ∇s∣∣U≡0.
证明. Take p∈U. Then there exists a smooth function f∈C∞(M), with f(p)=1 and suppf⊂U. Then f⋅s≡0, so by R-linearity: 0=∇(f⋅s)=df⊗s+f∇(s)Evaluated at p0==0,becauses(p)=0(df⊗s)(p)+f(p)∇(s)(p)=∇(s)(p)This implies ∇(s)=0 on U, because p∈U was arbitrary.
□
(2)
The value of ∇(s) at any point p∈M depends only on the restriction of s to an arbitrarily small neighborhood of p. If s,s′∈Γ(E), s.t. s∣∣U≡s′∣∣U for some U∋p, then ∇(s)∣∣U=∇(s′)∣∣U∇(s)(p) depends only on the germ of s at p. This is called differential operator.
(3)
If ∇1 and ∇0 are connections, so is t∇1+(1−t)∇0:=∇t, ∀t∈R.
证明.∇t is R-linear. ∇t(fs)=t∇1(fs)+(1−t)∇0(fs)=t(df⊗s+f∇1(s))+(1−t)(df⊗s+f∇0(s))=df⊗s+f∇t(s)
□
(4)
If ∇1, ∇0 are connections, then ∇1−∇0∈Ω1(End(E)), End(E)=Hom(E,E)=E∗⊗E.
证明.∇1−∇0 is R-linear.
The Leibniz rule gives (∇1−∇0)(fs)=f(∇1−∇0)(s).
⇒(∇1−∇0)(s)(p) depends only on s(p).
(∇1−∇0)p:Ep→Tp∗M⊗Ep.
∇1−∇0∈Γ(E∗⊗T∗M⊗E)=Ω1(E∗⊗E)=Ω1(End(E)).
□
命题 13.1.2. Every vector bundle E admits connections. The space of connections is naturally an affine space whose vector space of translation is Ω1(End(E)).
证明. Suppose E has connections. Then the difference of two connections is an element in Ω1(End(E)) by (4). Conversely, let A∈Ω1(End(E)) and ∇ a connection on E.
□
Claim 13.1.3.∇+A:Γ(E)s→Ω(E)↦∇(s)+A(s) is a connection.
证明.∇+AR-linear is clear. (∇+A)(fs)=∇(fs)+A(fs)=df⊗s+f∇(s)+fA(s)=df⊗s+f(∇+A)(s).
□
13.2Existence of Connections
Pick a system of local trivializations for E.ψi:π−1(Ui)→Ui×RkOn E∣∣Ui, we define ∇i as follows: Let sj∈Γ(E∣∣Ui) be defined by sj(p)=ψi−1(p,ej), where e1,…,ek is the standard basis of Rk. Every section s∈Γ(E∣∣Ui) has the form s=j=1∑kfjsj for uniquely determined functions fj∈C∞(Ui).∇i(s):=j=1∑kdfj⊗sjThis is clearly R-linear.∇i(fs)=∇i(j=1∑kf⋅fjsj)=j=1∑kd(ffj)⊗sj=j=1∑k(fdfj+fjdf)⊗sj=df⊗s+f⋅∇i(s)so ∇i is a connection on E∣∣Ui.
Let ρi be a smooth partition of unity subordinate to the covering of M by the Ui. Define ∇:=i∑ρi∇i⋅As in (3), we can show that ∇ is a connection. ∇i(sj)=0 by definition.
Terminology.s1,…,sk form a frame for E∣∣Ui.
If s is a section, s.t. ∇(s)≡0 for some connection ∇, then s is called parallel or covariantly constant.
Ωl(E)=Γ(ΛlT∗M⊗)l-forms on M, with values in E.
引理 13.2.1. For every connection ∇ on E, there is a unique R-linear map ∇:Ωl(E)→Ωl+1(E) satisfying: ∇(ω⊗s)=dω⊗s+(−1)lω∧∇s,∀ω∈Ωl(M),s∈Γ(E)(13.1)Moreover, this ∇ satisfies ∇(f(ω⊗s))=(df∧ω)⊗s+f∇(ω⊗s),f∈C∞(M)
证明. Every element in Ωl(E) is locally a sum of terms of the form ω⊗s. Define ∇ using a partition of unity and linearity, so ∇ is uniquely determined by (13.1). ∇(f(ω⊗s))=∇((fω)⊗s)=d(fω)⊗s+(−1)lf(ω∧∇s)=(df∧ω)⊗s+fdω⊗s+f(−1)lω∧∇s=(df∧ω)⊗s+f∇(ω⊗s)
□
13.3Curvature
Let ∇ be a connection on E.
引理 13.3.1. The composition ∇∘∇:Γ(E)→Ω2(E) is function-linear.
The lemma shows that ∇∇(s)=F∇(s), where F∇∈Ω2(End(E)).
定义 13.3.2.F∇ is called the curvature of ∇.
Let E→M be smooth vector bundle with connection ∇. Let s1,…,sk be frame. Then∇(si)=j=1∑kωij⊗sjwhere ωij∈Ω1(M). We have s=i=1∑kfisi, ∇(s)=i=1∑k(dfi⊗si+fi∇(si)) completely determined by (ωij). F∇∈Ω2(End(E)).F∇(si)=j=1∑kΩij⊗sjwhere Ωij∈Ω2(M).
Question: How is Ωij determined by ωij?F∇(si)=∇∘∇(si)=∇(j∑ωij⊗sj)=j=1∑k(dωij⊗sj−ωij∧∇(sj))=j=1∑k[dωij⊗sj−ωij∧l=1∑kωlj⊗sl]=j=1∑k[dωij−l=1∑kωil∧ωlj]⊗sj.SoΩij=dωij−l=1∑kωil∧ωljThis can be denoted asΩ=dω−ω∧ωThendΩij=−l∑dωil∧ωlj+l∑ωil∧dωlj=−l∑[Ωil+m∑ωim∧ωml]∧ωlj+l∑[ωil∧(Ωlj+m∑ωlm∧ωmj)]=l∑(ωil∧Ωlj−Ωil∧ωlj)+=0l,m∑(ωil∧ωlm∧ωmj−ωim∧ωml∧ωlj)
13.4Bianchi Identity
dΩij=l∑[ωil∧Ωlj−Ωil∧ωlj]which can be denoted asdΩ=ω∧Ω−Ω∧ωLet s1′,…,sk′ be another frame.si′=∑gijsjwhere g=(gij) invertible. Then∇(si′)=j=1∑kωij′sj′where (ωij)′ is the connection matrix of ∇ with respect to s1′,…,sk′.∇(si′)=∇(j∑gijsj)=j∑(dgij⊗sj+gij∇(sj))=j∑(dgij⊗sj+gijl=1∑kωjk⊗sl)=l=1∑k(dgij+j=1∑kgijωjl)⊗sl=l=1∑k(dgil+j∑gijωjl)⊗m=1∑kglm−1sm′=m=1∑k((l∑dgil+j∑gijωjl)glm−1)⊗sm′Thenωim′=l∑(dgil+j∑gijωjl)glm−1This can be denoted asω′=dgg−1+gωg−1The following terms are the same:a choice of local trivialization⇔a choice of a frame⇔a choice of gaugeA change of frame is called a gauge transformationg.Ω′=dω′−ω′∧ω′=d(dgg−1+gωg−1)−(dgg−1+gωg−1)∧(dgg−1+gωg−1)=d2gg−1−dg∧dg−1+dg∧ωg−1+gdωg−1−gω∧dg−1−dgg−1∧dgg−1−gωg−1∧dgg−1−dgg−1∧gωg−1−gωg−1∧gωg−1=gΩg−1Compare the following two equation:ω′=dgg−1+gωg−1Ω′=gΩg−1The first one shows that connection is not a “tensor”, while the second one shows that curvature is a “tensor”.
Let ∇:Γ(E)→Ω(E).
定义 13.4.1.∇Xs=⟨∇s,X⟩∈Γ(E) for every X∈X(M) is the covariant derivative of s (in the direction of X).
Let (U,φ) be a chart for M.x1,…,xn:Up→R↦φi(p)where dx1,…,dxn are the dual frame to O1,…,On.
Let s1,…,sk be a frame for E∣∣U. ∇ is represented by ω=(ωij) with respect to s1,…,sk. Then ωij=α∑nωijαdxα for unique ωijα∈C∞(U), where ωijα=⟨ωij,∂α⟩.∇∂αsis∇∂αs=⟨∇si,∂α⟩=⟨j∑ωij⊗sj,∂α⟩=j∑⟨ωij,∂α⟩⊗sj=j∑ωijαsj=i=1∑kfisi=⟨∇s,∂α⟩=⟨i=1∑kdfi⊗si+fi∇si,∂α⟩=j=1∑k∂αfjsj+i,j∑fiωijαsj=j=1∑k(∂αfj+i=1∑kfiωijα)sjAα:=(ωijα) is k×k matrix of C∞-functions on U.∇∂αs=∂αs+Aα(s)We define∇α:=∂α+Aα
13.5Parallel Transport
Let M⊂Rn open. Let EπM smooth vector bundle of rank k, with a connection ∇. Let y1,…,yn be linear coordinates on Rn. Let c:[0,1]→M be smooth curve, then write it is in terms of coordinatesc(t)c˙(t)=(y1(t),…,yn(t))=α=1∑ndtdyα∂yα∂=α=1∑ny˙α∂αAssume E is trivial. E≅M×Rk. Let s1,…,sk be the frame with si(p)=(p,ei). s∈Γ(E) is written uniquely as s=i=1∑kxisi.∇c˙(s)=⟨∇s,c˙⟩=⟨i=1∑kdxi⊗si+xi∇si,α=1∑ny˙α∂α⟩=i,α∑⟨j=1∑n∂yj∂xidyj⊗si+xij=1∑kωij⊗sj,y˙α∂α⟩=i,α∑y˙α∂yα∂xisi+xij=1∑nωijαy˙αsj=j,α∑y˙α∂yα∂xjsj+i,j,α∑xiωijαy˙αsj=j=1∑k(α=1∑n(∂yα∂xjy˙α+i=1∑kxiωijα)y˙α)sj
命题 13.5.1. Let E→M be any smooth vector bundle, with a connection ∇. Let c:[0,1]→M be a smooth curve and v∈Ec(0). Then there exists a unique lift c~:[0,1]→E with π∘c~=c, with c~(0)=v and ∇c˙s≡0 if s is a section of E∣∣imc given by c~.
证明. By compactness of [0,1], we can choose a finite subdivision t0=0<t1<⋯<tl=1, s.t. c∣∣[ti,ti+1] has image in an open set in M, which is the domain of a chart and over which E is trivial.
Without loss of generality, we only need to prove the proposition for c with image in a chart where E is trivial.
We write c(t)=(y1(t),…,yn(t)) and use the frame s1,…,sk given by the trivialization.
c~(t)=∑i=1kxi(t)si(c(t)) with v=c~(0)=i=1∑kxi(0)si(c(0)).
The equation ∇c˙s≡0 is equivalent to α=1∑n(∂yα∂xj+i=1∑kxiωijα)y˙α≡0,∀j∈{1,…,k}x˙j+i,α∑xiωijα≡0This is a linear system of ODE for the function x1,…,xk.
For every initial condition x1(0),…,xk(0), there is a unique smooth solution, which, moreover, depends linearly on the initial condition.
□
推论 13.5.2. Let EπM and ∇ be as in the proposition. Then every smooth curve c:[0,1]→M defines a unique linear map Ec(0)c~(0)=v→Ec(1)↦c~(1)This linear map is an isomorphism
Let EπM be any smooth vector bundle over M. p,q∈M, Ep, Eq are k-dimensional vector spaces.
(1)
If p,q∈U⊂M and ψ:E∣∣U→U×Rk trivialization, then ψ identifies Ep with {p}×Rk and Eq with {q}×Rk, so those are identified using ψ.
(2)
If a connection ∇ on E is given and there exists a smooth path c(0)=p, c(1)=q, then Pc=parallel transport along c defines an isomorphism between Ep and Eq. Pc depends not just on ∇ but also on c.
In a trivialization, every ∇ is given by ∇α=∂α+Aα.ωij=α∑ωijαdyα,Aα=ωijα
命题 13.5.3. Let EπM be a smooth vector bundle of rank k and s1,…,sk be frame. Let ∇ be a connection on E, ωij its connection matrix with respect to s1,…,sk and Ωij its curvature matrix. If we pick a chart with coordinate functions y1,…,yn, then [∇α,∇β]si=j=1∑kΩij(∂α,∂β)sj
推论 13.5.4.F∇≡0⇔Ωij for every local frame ⇔[∇α,∇β]=0.
Over a curve, every ∇ admits local trivializations by parallel sections, i.e. a parallel frame.
定理 13.5.5.E admits a system of local trivializations by ∇-parallel frames if and only if F∇≡=0.
定义 13.5.6.s∈Γ(E) is ∇-parallel if ∇s≡0. A frame s1,…,sk is ∇-parallel if ∇si≡0, ∀i.
证明. Suppose s1,…,sk is a ∇-parallel local frame. Then 0=∇si=j∑ωij⊗sj⇒ωij=0, ∀i,j. ⇒Ωij=dωij−l∑ωil∧ωlj=0, so F∇≡0.
Conversely, if F∇≡0, we want to find local ∇-parallel frames. Since the statement is local, we work on M=Rn.
For n=1, we find a ∇-parallel frame over R by parallel transport.
For n>1, we prove the statement by induction.
Let p⩾1 and assume we have a ∇-parallel frame over Rp×{0}⊂Rp+1. By construction, E is trivial on Rn, so we may pick an arbitrary frame for E. We need to find a gauge transformation g, so that si′=j∑gijsj gives a ∇-parallel frame s1′,…,sk′. We want to solve0=ωij′=(dg⋅g−1+gωg−1)ij⇔⇔⇔ωij′α=0,∀α(dg+gω)ijα=0,∀α∂αgij+l∑gilωljα=0,∀α(*)For the inductive step, we assume, we have a g s.t. (*) holds for α⩽p.
In the inductive step, we assume the statement has been proved for Rp. This means ωijα=0 for α⩽p.
To obtain the statement over Rp+1, we need to solve∂αgij=0forα⩽pand∂p+1gij+l∑gilωljp+1=0∀i,j(**)Fix all yβ except yp+1. We treat the second equation in (**) as an ODE in yp+1. With initial condition g(0)=I, this ODE has a unique solution.
Varying the starting point (the y-coordinates other than yp+1), the solutions of the ODE vary smoothly.
The assumption that F∇≡0, means [∇α,∇β]=0, ∀α,β. Take α⩽p, β=p+1. Then∂αωilp+1−∂p+1ωilα+j∑(ωijp+1ωjlα−ωijαωjlp+1)=0⇒⇒∂αωilp+1=0ωij′p+1=(dg⋅g−1+gωg−1)ijp+1=0because g solves the second equation in (**).
□
推论 13.5.7. A vector bundle EπM admits a flat connection ∇ if and only if it admits a system of trivializations with constant transition maps.
证明. If E admits ∇ with F∇≡0, then we can find local trivialization given by ∇-parallel frames.
ψU:π−1(U)v=i∑λisi→U×Rk↦(π(v),(λ1,…,λk))ψV:π−1(V)v=i∑μisi′→V×Rk↦(π(v),(μ1,…,μk))ψV∘ψU−1:(U∩V)×Rk(p,ω)→(U∩V)×Rk↦(p,g(p)ω)where g:U∩V→GLk(R) is smooth. ω′=dgg−1+gωg−1⇔dg≡0,sogis constant.Conversely suppose we have (Ui,ψi) a system of local trivialization for E, s.t. each ψj∘ψi−1 has the form (p,ω)↦(p,g(p)ω) with g constant.
On E∣∣Ui, we define a connection ∇ by making the constant sections in the trivial bundle parallel, i.e. si(p)=ψ−1(p,ei). ∇(j∑fjsj)=j∑dfj⊗sj
□
Claim 13.5.8. If Ui∩Uj=∅, then ∇i=∇j on π−1(Ui∩Uj).
证明.si′=j∑gijsj, with dgij≡0. ⇒si′ which are ∇j parallel are also ∇i parallel. ⇒∇i=∇j ⇒ The ∇i fit together to a global connection ∇. Since ∇i is flat, so is ∇.
□
注 13.5.9. To prove existence of connections on arbitrary E, we also took local trivializations (Ui,ψi) and the corresponding flat connection ∇i. If the transition functions are not constant, the ∇i do not agree on the overlaps of their domains.
∇=i∑ρi∇i, ρi a smooth partition of unity, is not flat.
13.6Compatible
EπM admits a positive definite metric ⟨,⟩:Γ(E)×Γ(E)→C∞(M).
定义 13.6.1. A connection ∇ on E is compatible with ⟨,⟩, if d⟨s1,s2⟩=⟨∇s1,s2⟩+⟨s1,∇s2⟩,∀s1,s2∈Γ(E)(13.2)
引理 13.6.2.∇ is compatible with ⟨,⟩ if and only if for every orthonormal local frame s1,…,sk, the connection matrix ω representing ∇ is skew-symmetric, i.e. ωij=−ωji, ∀i,j.
证明. Let s1,…,sk be orthonormal frame with respect to ⟨,⟩. Then ⟨si,sj⟩=const.,∀i,jIf ∇ is compatible with ⟨,⟩, then 0=d⟨si,sj⟩=⟨∇si,sj⟩+⟨si,∇sj⟩=⟨l∑ωil⊗sl,sj⟩+⟨sj,l∑ωjl⊗sl⟩=l∑(ωil⟨sl,sj⟩+ωjl⟨si,sl⟩)=ωij+ωji⇔ωij=−ωji
Conversely, assume ω is skew-symmetric⟨∇si,sj⟩+⟨si,∇sj⟩=ωij+ωji=0⟨si,sj⟩=const.⇒d⟨si,sj⟩=0⇒ (13.2) holds for the basis sections.
Let s=i∑fisi and s′=j∑gjsj. Then⟨s,s′⟩=i∑figi⇒d⟨s,s′⟩=i∑fidgi+i∑gidfi⟨∇s,s′⟩+⟨s,∇s′⟩=i,j∑⟨dfi⊗si+fi∇si,gjsj⟩+⟨fisi,dgj⊗sj+gj∇sj⟩=i∑gidfi+i∑fidgi+i,j∑figj=0by above(⟨∇si,sj⟩+⟨si,∇sj⟩)⇒d⟨s,s′⟩=⟨∇s,s′⟩+⟨s,∇s′⟩
□
引理 13.6.3. If ∇ is compatible with ⟨,⟩, then Ω is skew-symmetric for every orthonormal frame.
定义 13.6.4.A∈Γ(EndE) is skew-symmetric with respect to ⟨,⟩ if ⟨As,s′⟩=−⟨s,As′⟩,∀s,s′∈Γ(E)EndE=Skew−EndE⊕Sym−End(E).
命题 13.6.5. For every metric ⟨,⟩, there exist compatible connections ∇. All such connections is naturally an affine space for Ω1(Skew−End(E)).
证明. Let {Ui∣i∈I} be an open cover of M, s.t. E∣∣Ui is trivial. Then on every Ui, we have an orthonormal local frame for E with respect to ⟨,⟩. Let s1,…,sk be such an orthonormal frame over Ui. Define ∇i on E∣∣Ui by ∇i(sj)≡0.
Claim 13.6.6.∇i is compatible with ⟨,⟩.
证明. With respect to orthonormal frame s1,…,sk, ωij≡0. So ωij is skew-symmetric. Let ρi be a smooth partition of unity subordinate to Ui.
□
Define ∇:=i∑ρi∇i. This is a connection on E compatible with ⟨,⟩, because each ∇i is.
Suppose ∇, ∇′ are both compatible with ⟨,⟩. Set ∇−∇′=A∈Ω1(EndE). Then⟨As,s′⟩=⟨(∇−∇′)s,s′⟩=⟨∇s,s′⟩−⟨∇′s,s⟩=d(⟨s,s′⟩)−⟨s,∇s′⟩−d(⟨s,s′⟩)+⟨s,∇′s⟩=−⟨s,(∇−∇′)s′⟩=−⟨s,As′⟩So A∈Ω1(Skew−End(E)).
If ∇ is compatible with the metric and A∈Ω1(Skew−EndE), then ∇+A is also compatible.
□
例 13.6.7.k=1: Let s be a (local) section of E, s nowhere zero. ∇s=α⊗s=ω11⊗sΩ11=dω11−l∑ω1l∧ωl1=dω11−ω11∧ω11⇒dΩ11=0Suppose we have a metric ⟨,⟩ and ⟨s,s⟩≡1. If ∇ is compatible with ⟨,⟩, then ∇s≡0. ⟨s,s⟩=const.⇒0=2⟨s,∇s⟩⇒∇s≡0,by 1-dimensionConclusion: Every compatible connection ∇ on a rank 1 bundle is flat. ⇒ Every rank 1 bundle admits a flat connection.
13.7Affine Connection
定义 13.7.1. A connection on E=TM is called an affine connection on M.Γ(E)s→↦Ω1(E)∇siX↦Γ(E)∇Xswhere X∈X(M). If E=TM, then s∈X(M).
例 13.7.2. There is no affine connection ∇ satisfying ∇XY=∇YX, ∀X,Y∈X(M).
13.8Torsion
定义 13.8.1. If ∇ is an affine connection on M, then T∇(X,Y):=∇XY−∇YX−[X,Y],forX,Y∈X(M)T∇ is the torsion of ∇.
定义 13.8.2.∇ is symmetric if it is torsion-free, i.e. T∇≡0.
Let x1,…,xn be local coordinates on M given by some charts (U,φ). Then ∂1,…,∂n form a local frame for TM∣∣U=TU. If ∇ is any affine connection on M, we can write∇∂i∇∂l∂i=j=1∑nωij⊗∂jωij=l=1∑nωijldxl=j=1∑n⟨ωij,∂l⟩∂j=j=1∑nωijl∂j=j=1∑nΓlij∂jThe Γlij are called the Christoffel symbols of ∇ with respect to the local coordinates x1,…,xnT∇(∂α,∂β)=∇∂α∂β−∇∂β∂α−[∂α,∂β]=j=1∑n(Γαβj−Γβαj)∂j
引理 13.8.4.T∇≡0⇔Γαβj=Γβαj, ∀α,β,j∈{1,…,n} and all local coordinate systems on M.
定义 13.8.5.∇∗ on E∗ bydλ(s)d⟨λ,s⟩=λ(∇s)+(∇∗λ)(s)=⟨λ,∇s⟩+⟨∇∗λ,s⟩where ∀λ∈Γ(E∗),s∈Γ(E).
Claim 13.8.6.∇∗ is a connection on E∗.
证明.(∇∗λ)(s)=dλ(s)−λ(∇(s))(∇∗(fλ))(s)=d(fλ)(s)−(fλ)(∇s)=d(f⋅λ(s))−(f⋅λ)(∇s)=λ(s)df+fdλ(s)−f⋅λ(∇(s))=λ(s)df+f(∇∗λ)(s)=(df⋅λ+f∇∗λ)(s)Let s1,…,sk be a local frame for E, and λ1,…,λk the dual frame for E∗, i.e.λi(sj)0=δij=λi(∇sj)+(∇∗λi)(sj)=λi(m=1∑kωjm⊗sm)+(m=1∑kωil∗⊗λl)(sj)=ωji+ωij∗⇒ωij∗=−ωji,ω∗=−ωtIf ∇ is an affine connection of M, then ∇∗ is a connection on T∗M.
□
命题 13.8.7.∇ is torsion-free if and only if
证明. Let x1,…,xn be local coordinates, given by a chart (U,φ). Then ∂1,…,∂n is a local frame for TM and dx1,…,dxn is the dual frame for T∗M.
Every 1-form α on U is of the formβ=i=1∑nfidxi⇒dβ=i=1∑ndfi∧dxi=i∑j∑∂xj∂fidxj∧dxi=i<j∑(∂xj∂fi−∂xifj)dxj∧dxi∇∗β=i∑∇∗(fidxi)=i∑dfi⊗dxi+fi∇∗dxi=i∑dfi⊗dxi+fij∑ωij∗⊗dxj=i∑(dfi⊗dxi−fij∑ωji⊗dxj)=i∑(j∑∂xj∂fidxj⊗dxi−fij,α∑ωjiαdxα⊗dxj)=i,j∑∂xj∂fidxj⊗dxi−i,j,α∑fiωjiαdxα⊗dxj=j,α∑∂xα∂fjdxα⊗dxj−i,j,α∑fiωjiαdxα⊗dxj=j,α∑(∂xα∂fj−i∑fiωjiα)dxα⊗dxj∧(∇∗β)=j<α∑(∂xα∂fj−∂xj∂fα−i∑fi(ωjiα−ωαij))dxα∧dxj∧(∇∗β)=dβ,∀β⇔ωjiα−ωαij=0,∀j,α⇔Γαji=Γjαi,∀α,j⇔T∇≡0β=df:∇∗β=∇∗(i=1∑n∂xi∂fdxi)=i=1∑nd(∂xi∂f)dxi+∂xi∂f∇∗(dxi)=i,j∑∂xi∂xj∂2fdxj⊗dxi−∂xi∂fωji⊗dxj=i,j∑(∂xi∂xj∂2fdxj⊗dxi−α∑∂xi∂fωjiαdxα⊗dxj)=α,j∑(∂xj∂xα∂2f−i∑∂xi∂fΓαji)dxα⊗dxjT∇≡0⇔∈Γ(T∗M⊗T∗M)∇∗df is symmetric ∀f∈C∞(M).T∇+A(X,Y)=(∇+A)XY−(∇+A)YX−[X,Y]==T∇∇XY−∇YX−[X,Y]+AX(Y)−AY(X)where A∈Ω1(End(TM)), AX∈Γ(End(TM)), AXY is evaluation of the endomorphism AX on Y.
□
13.9Riemannian Geometry
定理 13.9.1. Let ⟨,⟩ be a metric on TM (a Riemannian metric on M). For every C∞(M)-bilinear skew-symmetricT:X(M)×X(M)→X(M)There exists a unique affine connection ∇ compatible with ⟨,⟩ and T∇=T.
证明. Uniqueness: Suppose ∇ is compatible, with ⟨,⟩ and T∇=T.d⟨X,Y⟩=⟨∇X,Y⟩+⟨X,∇Y⟩,∀X,Y∈TMLZ⟨X,Y⟩T(Z,Y)=⟨∇ZX,Y⟩+⟨X,∇ZY⟩,∀X,Y,Z∈TM=∇ZY−∇YZ−[Z,Y]⟨∇ZX,Y⟩=LZ⟨X,Y⟩−⟨X,∇ZY⟩=LZ⟨X,Y⟩−⟨X,T(Z,Y)⟩−⟨X,∇YZ⟩−⟨X,[Z,Y]⟩=LZ⟨X,Y⟩−⟨X,T(Z,Y)⟩−LY⟨X,Z⟩+⟨∇YX,Z⟩−⟨X,[Z,Y]⟩=LZ⟨X,Y⟩−⟨X,T(Z,Y)⟩−LY⟨X,Z⟩+⟨T(Y,X),Z⟩+⟨∇XY,Z⟩+⟨[Y,X],Z⟩−⟨X,[Z,Y]⟩=LZ⟨X,Y⟩−⟨X,T(Z,Y)⟩−LY⟨X,Z⟩+⟨T(Y,X),Z⟩+LX⟨Y,Z⟩−⟨Y,∇XZ⟩+⟨[Y,X],Z⟩−⟨X,[Z,Y]⟩=LZ⟨X,Y⟩−⟨X,T(Z,Y)⟩−LY⟨X,Z⟩+⟨T(Y,X),Z⟩+LX⟨Y,Z⟩−⟨Y,T(X,Z)⟩−⟨Y,∇ZX⟩−⟨Y,[X,Z]⟩+⟨[Y,X],Z⟩−⟨X,[Z,Y]⟩Therefore, we have the so called Koszul formula.⟨∇ZX,Y⟩=21(LZ⟨X,Y⟩−LY⟨X,Z⟩+LX⟨Y,Z⟩−⟨X,T(Z,Y)⟩+⟨Z,T(Y,X)⟩−⟨Y,T(X,Z)⟩−⟨Y,[X,Z]⟩+⟨[Y,X],Z⟩−⟨X,[Z,Y]⟩)This shows ∇ZX is uniquely determined ∀Z,X∈X(M).
Existence: Define ∇ZX by the Koszul formula. Fix M and ⟨,⟩ on TM. Let ∇ be the Levi-Civita connection of ⟨,⟩. Let x1,…,xn be local coordinates given by a chart ∂1,…,∂n the coordinate vector fields.γij⟨∇∂i∂j,∂k⟩∇∂i∂j⟨∇∂i∂j,∂l⟩=⟨∂i,∂j⟩=21(L∂iγjk+L∂jγki−L∂kγij)=21(∂iγjk+∂jγki−∂kγij)=k=1∑nωjki∂k=k=1∑nΓijk∂k=k=1∑nΓijkγkl=21(∂iγjk+∂jγki−∂kγij)Formula of Γijk in terms of γij.
□
Setting T=0, we get
推论 13.9.2 (Fundamental Lemma of Riemannian Geometry). For every metric on TM, there exists a unique, compatible, torsion-free connection.
定义 13.9.3. This connection ∇ as in the corollary is called the Levi-Civita connection of (M;⟨,⟩).
定义 13.9.4. If ∇ is the Levi-Civita connection, thenR(X,Y)Z:=(F∇(X,Y))Zis called the Riemann curvature tensor of the metric ⟨,⟩.
This is trilinear over C∞(M).R:X(M)×X(M)×X(M)(X,Y,Z)→X(M)↦R(X,Y)ZEquivalently, we can consider R as follows:R:X(M)×X(M)×X(M)×X(M)(X,Y,Z,W)→C∞(M)↦⟨R(X,Y)Z,W⟩
命题 13.9.5 (Symmetries of R).
(1)
R(X,Y)Z=−R(Y,X)Z, because F∇ is a 2-form.
(2)
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0, ∀X,Y,Z. Sometimes it is called the first Bianchi Identity.
(3)
⟨R(X,Y)Z,W⟩=−⟨R(X,Y)W,Z⟩, ∀X,Y,Z,W.
(4)
⟨R(X,Y)Z,W⟩=⟨R(Z,W)X,Y⟩, ∀X,Y,Z,W
证明. (2) It is enough to prove (2) for X,Y,Z with pairwise vanishing brackets. F∇(X,Y)s=∇X∇Ys−∇Y∇Xs−∇[X,Y]sIn this case, left hand side of (2) ∇X∇YZ−∇Y∇XZ+∇Y∇ZX−∇Z∇YX+∇Z∇XY−∇X∇ZY=∇X=0(∇YZ−∇ZY)+∇Y=0(∇ZX−∇XZ)+∇Z=0sinceT∇=0(∇XY−∇YX)=0
(3): We need to prove ⟨R(X,Y)Z,Z⟩=0, ∀X,Y,Z. We may assume that X,Y,Z have vanishing brackets. ⟨R(X,Y)Z,Z⟩=⟨∇X∇YZ,Z⟩−⟨∇Y∇XZ,Z⟩Consider LX⟨Z,Z⟩LYLX⟨Z,Z⟩=⟨∇XZ,Z⟩+⟨Z,∇XZ⟩=Z⟨∇XZ,Z⟩=2LY⟨∇XZ,Z⟩=2(⟨∇Y∇XZ,Z⟩+⟨∇XZ,∇YZ⟩)LYLX⟨Z,Z⟩ is symmetric in X,Y, since ⟨X,Y⟩=0 and ⟨∇XZ,∇YZ⟩ is symmetric in X,Y. Therefore, ⟨∇Y∇XZ,Z⟩ is symmetric in X,Y. Thus⇒⟨R(X,Y)Z,Z⟩=0
(4):
Sum for upper left-hand face is ⟨R(Y,X)W,Z⟩+⟨R(W,Y)X,Z⟩+⟨R(X,W)Y,Z⟩. Sum of labels is =0 by (1)+(2)+(3) for top left and right and bottom front and back faces.
Sum the top left and right and subtract the bottom front and back faces: ⇒⇒⇒The middle nodes cancel0=⟨R(X,Y)Z,W⟩−⟨R(Z,W)X,Y⟩
□
Let M with metric and R its Riemann tensor.
定义 13.9.6. Take p∈M, X,Y∈TpM linearly independent K(X,Y):=⟨X,X⟩⟨Y,Y⟩−⟨X,Y⟩2⟨R(X,Y)Y,X⟩This is called the sectional curvature of (M,⟨,⟩) with respect to the plane σ spanned by X,Y in TpM.
Since K(X,Y)=K(Y,X), we also get K(X,λY)=K(X,Y).K(X,Y+λX)=⟨X,X⟩(⟨Y,Y⟩+λ2⟨X,X⟩+2λ⟨X,Y⟩)−⟨X,Y+λX⟩2⟨R(X,Y)(Y+λX),X⟩+⟨R(X,λX)(Y+λX),X⟩=K(X,Y)This shows K(X,Y) is the same ∀X,Y∈σ.
□
命题 13.9.8. The collection of all sectional curvatures determines R.
证明. Let V be a vector space with positive definite ⟨,⟩.
Let R,R′:V×V×V→V be two trilinear maps satisfying the symmetry of the curvature tensor. Then if K(X,Y)=⟨X,X⟩⟨Y,Y⟩−⟨X,Y⟩2⟨R(X,Y)Y,X⟩ equals K′ computed in the same way from R′ for all linear independent X, Y, R=R′.
R(X,Y)Z=0=R′(X,Y)Z, if X, Y are linear independent.
Assume X, Y linearly independent, then K(X,Y)=K′(X,Y) implies ⟨R(X,Y)Y,X⟩=⟨R′(X,Y)Y,X⟩,∀X,Ylinearly independent⇒⇔⇔⟨R(X+Z,Y)Y,X+Z⟩=⟨R′(X+Z,Y)Y,X+Z⟩⟨R(X,Y)Y,X⟩+⟨R(X,Y)Y,Z⟩+=⟨R(Y,Z)X,Y⟩=⟨R(X,Y)Y,Z⟩⟨R(Z,Y)Y,Z⟩+⟨R(Z,Y)Y,Z⟩=(R↔R′)2⟨R(X,Y)Y,Z⟩=2⟨R′(X,Y)Y,Z⟩,∀ZAfter one more polarization Y↦Y+W, we conclude⟨R(X,Y)Z,W⟩=⟨R′(X,Y)Z,W⟩,∀X,Y,Z,W⇒R=R′
□
例 13.9.9. Let M=Rn, and ⟨,⟩ constant, standard. ∇∂xn∂=0 gives Levi-Civita ⇒R≡0, so K≡0.
例 13.9.10. Let M⊂Rn+1 be smooth hypersurface. ⟨,⟩ on Rn+1 as in 13.9.9. ∇ the Levi-Civita connection of Rn+1. We restrict the constant scalars product on Rn+1 to the tangent space of M to get a metric ⟨,⟩ on TM. Rn+1×Rn+1∣∣M=TRn+1∣∣M=TM⊕TM⊥where TM⊥ is the normal bundle of M.
If M is orientable, then there is a uniquely defined unit normal vector field to M, so that the orientation of M together with the positive or of R defines the standard orientation of Rn+1.
定义 13.9.11.G:Mp→Sn⊂Rn+1↦n(p) is the Gauss map of M.
定义 13.9.12.L:TpMv→TpM↦(∇~vn)(p) is the Weingarten map of M at p.
引理 13.9.13.L is self adjoint with respect to ⟨,⟩.
证明. Let X,Y∈X(M).⟨L(X),Y⟩=⟨∇~Xn,Y⟩=LX⟨n,Y⟩−⟨n,∇~XY⟩=−⟨n,∇~YX+[X,Y]⟩=−⟨n,∇~YX⟩=−LY⟨n,X⟩+⟨∇~Yn,X⟩=⟨L(Y),X⟩=⟨X,L(Y)⟩
□
引理 13.9.14.DpG=L.
证明.DpG:TpM→TG(p)Sn=TpM, since both are orthogonal complement of n.
Let c:(−ε,ε)→M be a smooth curve, with c(0)=p and c˙(0)=v. Then DpG(v)=(Dc(0)G)(c˙(0))=D0(G∘c)(∂t∂)=dtdn(c(t))∣∣t=0=∇~c˙(0)n=L(v)
□
Let X, Y∈X(M).∇~XY=(∇~XY)t+(∇~XY)nwith respect toRn+1=TpM⊕Rn(p)
定义 13.9.15. Define ∇XY=π(∇~XY), π:Rn+1→TpM is the projection with kernel Rn(p).
引理 13.9.16.∇ is the Levi Civita connection of M.
证明. Step 1: ∇ is a connection on TM. ∇XY is R-linear in X, Y and it is C∞(M)-linear in X. ∇X(fY)=π(∇~X(fY))=π(LXf⋅Y+f∇~XY)=LXf⋅Y+f⋅∇XYLeibniz rule for ∇.
Step 2: ∇ on TM is compatible with ⟨,⟩. ⟨∇XY,Z⟩+⟨Y,∇XZ⟩=⟨∇~XY,Z⟩+⟨Y,∇~XZ⟩=LX⟨Y,Z⟩,X,Y,Z∈X(M)
Step 3: 0=T∇~(X,Y)=∇~XY−∇~YX−[X,Y],X,Y∈X(M)(13.3)projecting to TM gives 0=∇XY−∇YX−[X,Y]=T∇(X,Y)In (13.3), take ⟨−,n⟩0=⟨∇~XY,n⟩−⟨∇~YX,n⟩Lemma 1 Proof−⟨L(X),Y⟩+⟨X,L(Y)⟩⇔Lis self adjoint with respect to⟨,⟩.
□
X,Y∈X(M), ∇~XY=∇XY+⟨∇~XY,n⟩n=∇XY−⟨L(X),Y⟩n.
Take X,Y,Z∈X(M).∇~X∇~YZ=∇~X(∇YZ−⟨L(Y),Z⟩n)=∇~X∇YZ−LX⟨L(Y),Z⟩⋅n−⟨L(Y),Z⟩∇~Xn=∇X∇YZ−⟨L(X),∇YZ⟩⋅n−⟨∇XL(Y),Z⟩⋅n−⟨L(Y),∇XZ⟩⋅n−⟨L(∇XY),Z⟩⋅n−⟨L(Y),Z⟩L(X)Similarly for ∇~Y∇~XZ∇~[X,Y]Z=∇[X,Y]Z−⟨L([X,Y],Z)⟩n0=R~(X,Y)Z=∇~X∇~YZ−∇~Y∇~XZ−∇~[X,Y]Z=∇X∇YZ−⟨L(Y),Z⟩L(X)−(⟨L(X),∇YZ⟩+⟨∇XL(Y),Z⟩+⟨L(Y),∇XZ⟩)n−∇Y∇XZ+⟨L(X),Z⟩L(Y)+(⟨L(Y),∇XZ⟩+⟨∇YL(X),Z⟩+⟨L(X),∇YZ⟩)n−∇[X,Y]Z+⟨L([X,Y]),Z⟩nProjecting to TM, we get the Gauss equation⇒R(X,Y)Z=⟨L(Y),Z⟩L(X)−⟨L(X),Z⟩L(Y)Projecting to n⇒⇒⇒0=−⟨L(X),∇YZ⟩⟨L([X,Y]),Z⟩L([X,Y])−⟨∇XL(Y),t⟩−⟨L(Y),∇XZ⟩+⟨L(Y),∇XZ⟩+⟨∇YL(X),Z⟩+⟨L(X),∇YZ⟩+⟨L([X,Y]),Z⟩=⟨∇XL(Y),Z⟩−⟨∇YL(X),Z⟩∀X,Y,Z∈X(M)=∇XL(Y)−∇YL(X)∀X,Y∈X(M)This is called the Codazzi-Mainardi equation. We can apply the Gauss equation to any smooth hypersurface M⊂Rn+1. If M is an affine hyperplane, G is constant, so L≡DG≡0⇒R(X,Y)Z=0.
If M⊂Rn+1 is the unit sphere Sn, then G=Id⇒L=DG=Id. By the Gauss equationR(X,Y)Z=⟨Y,Z⟩X−⟨X,Z⟩YX,Y∈TpSn, linear independent:K(X,Y)=⟨X,X⟩⟨Y,Y⟩−⟨X,Y⟩2⟨R(X,Y)Y,X⟩=⟨X,X⟩⟨Y,Y⟩−⟨X,Y⟩2⟨Y,Y⟩⟨X,X⟩−⟨X,Y⟩⟨Y,X⟩=1If M=Sn(r) is the sphere of Radius r in Rn+1, thenG=r1⇒L=r1⇒R(X,Y)Z=r21(⟨Y,Z⟩X−⟨X,Z⟩Y)⇒K(X,Y)=r21
注 13.9.17.(M,⟨,⟩) is any Riemannian manifold. Consider (M,⟨,⟩λλ⟨,⟩) for λ>0. Then K(X,Y)⟨,⟩λ=λ1K(X,Y)⟨,⟩.