Let M be a smooth manifold, f∈C∞(M)=C∞(M,R) and X∈X(M).
定义 8.1.1.(LXf)(p)=∂t∂φt∗(f)(p)∣∣t=0,whereφis the flow ofX.=∂t∂f(φt(p))∣∣t=0=t→0limtf(φt(p))−f(φ0(p))=t→0limtf(φt(p))−f(p)=Dpf(X(p))=dpf(X(p))
Dp↔dpf:Tp→Tf(p)R=Rf:Tp∗M
The Lie derivative LX sends smooth functions to smooth functionsLX:C∞(M)→C∞(M)
引理 8.1.2.LX(f⋅g)=(LXf)⋅g+f⋅(LXg) for all f,g∈C∞, wheref⋅g:M→RLike Leibniz rule in derivative (fg)′=f′g+fg′, we haveDp(f⋅g)=(Dpf)⋅g+f⋅(Dpg)We can see thatL:X(M)X→Der(C∞(M))↦LX
定义 8.1.3. If A is a R-algebra, thenDer(A):={d:A→A∣disR-linear andd(a⋅b)=d(a)⋅b+a⋅d(b)}
If λ∈R, then LλXf=λLXf, ∀f∈C∞(M). In fact, for all g∈C∞(M), LgXf=gLXf, ∀f∈C∞(M). Moreover, LX+Y(f)=LXf+LYf.
证明.∀p∈M, we haveLX(f⋅g)(p)=∂t∂(f⋅g)(φt(p))∣∣t=0=∂t∂(f(φt(p))⋅g(φt(p)))∣∣t=0=(LXf)(p)⋅g(p)+f(p)⋅(LXg)(p)
□
命题 8.1.4. The map X(M)X→Der(C∞(M))↦LX is an isomorphism of vector spaces.
证明. (1) The map is linear. (2) The map is injective: If X≡0, then ∃p∈M, s.t. X(p)=0. Consider φ:Up×(−ε,ε)→M be part of a local flow of x. ∃f∈C∞(Up), s.t. f(φt(p))≡t. After multiplication with a suitable bump function and extension by 0, we may arrange f∈C∞(M). (LXf)(p)=(∂t∂t)∣∣t=0=1, so LX≡0. (3) The map is surjective: Let Δ∈Der(C∞(M)). Step 1: If U⊂M is open, and f∈C∞(M) is such that f∣∣U≡0, then Δ(f)∣∣U≡0. For x∈U, take φ∈C∞(M) with φ(x)=0 and φ∣∣M∖U≡1.⇒φ⋅f=f⇒Δ(f)=Δ(φ)⋅f+Δ(f)⋅φ⇒(Δf)(x)=(Δφ)(x)⋅=0f(x)+(Δf)(x)⋅=0φ(x)=0Step 2: If there is an open neighborhood U of a point x∈M, such that f∣∣U≡g∣∣U, then (Δf)(x)=(Δg)(x). (Apply Step 1 to f−g.) Step 3: Let Gx be the R-vector space of germs of C∞ functions at x∈M. We can defineΔ(x):Gx[f]→R↦(Δf)(x)Step 2 says that this is well-defined. Δ(x) is a derivation on the algebra Gx. Using a chart, we may assume M=Rn, x∈Rn, Δ(x)=i=1∑nλi∂xi∂. So Δ(x) is a tangent vector in TxM, and it depends smoothly on x. Define X∈X(M) by setting X(x)=Δ(x).
Thus, Δ=LX.
□
引理 8.1.5. For X, Y∈X(M), there is a unique [X,Y]∈X(M), s.t. LXLY−LYLX=L[X,Y].
证明.(LXLY−LYLX)(f⋅g)=LX((LYf)⋅g+f⋅(LYg))−LY((LXf)⋅g+f⋅(LXg))=(LXLYf)⋅g+(LYf)⋅(LXg)+(LXf)⋅(LYg)+f⋅(LXLYg)−(LYLXf)⋅g−(LXf)⋅(LYg)−(LYf)⋅(LXg)−f⋅(LYLXg)=(LXLY−LYLX)(f)⋅g+f⋅(LXLY−LYLX)(g)∀f,g∈C∞(M), so LXLY−LYLX is a derivation on C∞(M). By the surjectivity in the Proposition 8.1.4, ∃[X,Y]∈X(M), s.t.L[X,Y]=LXLY−LYLXBy the injectivity in the Proposition 8.1.4, this vector field is unique.
□
定义 8.1.6.[X,Y] is the Lie bracket of X and Y. [,]:X(M)×X(M)→X(M) is bilinear and skew-symmetric.
定义 8.2.1. A Lie algebrag is a R-vector space, with a map [,]:g×g→g, which is bilinear, skew-symmetric, and satisfies the Jacobi identity.
X(M) is a Lie algebra with the Lie bracket.
定义 8.2.2. A Lie group G is a smooth manifold with a group structurem:G×G(g1,g2)→G↦g1g2=g1⋅g2s.t. m and i:Gg→G↦g−1 are smooth maps.
例 8.2.3.
(1)
G=GLk(R)⊂Mat(k×k,R)=Rk2.
(2)
Subgroups of GLk(R) which are also submanifolds, e.g. GLk+(R), O(k), GLk(C)⊂GL2k(R).
If G is a Lie group and g∈G, thenleft multiplicationlg:Ghright multiplicationrg:Gh→G↦g⋅h→G↦h⋅gare diffeomorphisms.lg−1 is also a smooth map lg∘lg−1=lg−1∘lg=IdG.
For every g∈G,Delg:TeG→TgGis an isomorphism. dimG=n, TeG=RnG×TeG(g,v)tTG↦(Delg)(v)
引理 8.2.4. This is an isomorphism of vector bundle, so TG is trivial.
证明.t is smooth. Delg is an isomorphism TeG→TgG for any g∈G.
□
定义 8.2.5.X∈X(G) is left-invariant if X(g)=(Delg)X(e).
引理 8.2.6. If X is left-invariant, then (Dglh(X(g))=X(h⋅g).
定义 8.2.7.g⊂X(G) is linear subspace of left-invariant vector field.
[,] sends pairs of left-invariant vector fields to a left-invariant vector field. ⇒g⊂X(G) is a sub-Lie algebra.
定义 8.2.8.g=L(G) is the Lie algebra of the Lie group G. dimg=dimG.
定义 8.2.9.X,Y∈X(M). φt is the flow of x.LXY=“∂t∂Y(φt(p))∣∣t=0”,Y(φt(p))∈Tφt(p)M=∂t∂Dφt(p)φ−t(Y(φt(p)))∣∣t=0=t→0limtDφt(p)φ−t(Y(φt(p)))−Y(p)
Define g(t,x)=∫01f′(ts,x)ds, where f′(u,x)=∂u∂f and f(u,x)=f(φu(x)), for any f∈C∞(M).tg(t,x)=∫01f′(ts,x)⋅t⋅ds=∫0tf′(u,x)du,whereu=ts=f(t,x)−f(0,x)=f(t,x)−f(x)⇒f(t,x)=f(x)+tg(t,x), f∘φ−t=f(−t,x).
证明. Using the isomorphism of X(M) and Der(C∞(M)), we need to proveLLXYf=L[X,Y]f,f∈C∞(M)Let φt be the flow of X and f(t,x)=f(φt(x))=f(x)+tg(t,x) with g(0,x)=LXf. LYLXf=LYg(0,−)=t→0limLYg(t,−). Zt=t1(Dφt(p)φ−t(Y(φt)(p))−Y(p)), so thatLXYLLXYf=t→0limZt=t→0limLZtf=t→0limt1(LDφtφ−t(Y)f−LYf)=t→0limt1(LY(φ−t(−))(f∘φ−t)−LYf)=t→0limt1(LY(φt(p))(f−tg−t)−LY(p)f)=t→0limt1(LY(φt(p))(f−tg−t)−LY(p)f)=t→0limt1(LY(φt(−))f−LY(−)f)−t→0limLY(φt(−))g−t=LXLYf−LYLXf=L[X,Y]f
□
定理 8.2.12. Let X,Y∈X(M), φt, φs flows for x respectively Y. Then [X,Y]≡0⇔φt∘φs=φs∘φt, ∀s,t.
证明.
“⇐”
φt, φs commuting means that φt maps flowlines of Y to flowlines of Y. ⇒Dφt(Y)=Y.[X,Y]=LXY=t→0limt1(Dφt(Y)−Y)=0
“⇒”
For p∈M, consider v(t)v˙(t)=Dφt(p)φ−tY(φt(p))∈TpM=∂t∂v(t)∣∣t=0=(LXY)(p)=[X,Y](p)=0Take p=ψs(q), then ∂s∂p=Y. ∂s∂φt(p)=(Dφt)(∂s∂p)=Dφt(Y)=Ysince v(t) is independent of t. So φt(ψs(q)) is a flowline of Y starting at p=φt(q) at time s=0.
By the uniqueness of the flowline of Y through p, we have φtψs(q)=ψs(p)=ψs(φt(q))φt∘ψs=ψs∘φt whenever both sides are defined.
□
定理 8.2.13. Let X1,…,Xk∈X(M), s.t. [Xi,Xj]≡0 for all i, j, and X1(p),…,Xk(p) are linearly independent in TpM for all p∈M. Then around every point p∈M, there is a chart (U,φ), such that Dqφ(Xi(q))=∂Xi∂ for all i and all q∈U.
证明. The problem is local, so we may assume M is Rn.
After a linear change of basis for Rn, we may assume Xi(0)=∂xi∂ for i∈{1,…,k}. So X1(0),…,Xk(0),∂xk+1∂,…,∂xn∂ is a basis for Rn=T0Rn. ∃ open neighborhood U of 0 in Rn and an ε>0, s.t. the local flows φi of Xi are defined for all (p,t)∈U×(−ε,ε). Define f:U→Rn byf(x1,…,xn)=φX11∘φX22∘⋯∘φXkk(0,…,0,xk+1,…,xn)Without loss of generality, this is defined for all (x1,…,xn)∈U. By the assumption [Xi,Xj]≡0, the φi and φj commute.
fissmoothand∂xi∂f(0)∂xi∂f(0)f(0)=Xi(0)=∂xi∂=0fori∈{1,…,k},for alliWe also have∂xi∂f(x)=Xi(x)f(0)=0. D0f(∂xi∂)=∂xi∂ for i⩾k+1. For any x∈U, we have Dxf(∂i∂)=Xi(f(x)) for i⩽k. If U is small enough, then f:U→f(U) is a diffeomorphism. Define φ:=f−1, Dpφ(Xi)=∂xi∂ for all p∈f(U).