用户: Solution/ 笔记: 金融中的随机分析

此处参考由 Steven E. Shreve 所编写的英文教材《Stochastic Calculus for Finance II》, 此教材也有中译, 但作者用的是英文版, 故此处仅对名词做翻译.
1一些定义
-algebra -代数
定义 1.1. We say that is a -algebra if is a nonempty collection of subsets of that satisfy:
1. | if , then ; |
2. | if , , then . |
Filtration 域流
定义 1.2. Given a fixed number , if :
• | , is - algebra ; |
• | , |
Then,is a filtration.
Martingale 鞅
定义 1.3. Given a fixed number , filtration and a stochastic process , if : Then is a martingale.
Adapted stochastic process 适应随机过程
定义 1.4. We say that stochastic process is adapted to if is -measurable.
Markov process 马尔科夫过程
定义 1.5. Given a fixed number , filtration , an adapted stochastic process and Borel-measurable functions , if : Then is a Markov process.
2Symmetric Random Walk 对称随机游走
We consider a coin flip game with a 50-50 probability of heads or tails. Let -th times game be , thus we have:It is easy to prove that:Then, we can define symmetric random walk:
定义 2.1. is said to be a symmetric random walk, that is, if:
Besides, we can define Scaled Symmetric Random Walk:
定义 2.2. For fixed , define: where is an integer.
If is not an integer, we consider the