Let 1≤pi≤qi≤∞. Let T be a quasi-linear operator defined on Lp0(X,μ)+Lp1(X,μ) and taking values in the set of measurable functions on (Y,ν), where K≥1 is the constant that makes ∣T(f+g)∣≤K(∣Tf∣+∣Tg∣). Assume that ∥Tf∥Lqi,∞(Y,ν)≤Ai∥f∥Lpi(X,μ) for some Ai, i=0,1. Fix 0<t<1 and letp1=p01−t+p1t,q1=q01−t+q1t.Then there exists a constant C=C(p0,p1,q0,q1,K,A0,A1,t) such that∥Tf∥Lq(Y,ν)≤C∥f∥Lp(X,μ).
Proof:
This is the lower triangular form of the Marcinkiewicz interpolation theorem. See Theorem 3.8 of the paper InterpolationTheoremsandApplications by Calista Bernard; or see Theorem 27 of Tao’s note from the link given in the previous problem.
Note that in both of the references T is assumed to be sublinear instead of quasi-linear, yet for the problem above, we have dT(f+g)(2Kα)≤dTf(α)+dTg(α) all the same.
3.
A solution to the heat equation on Rn{(∂t∂−Δ)u(t,x)=0,u(0,x)=f(x)is etΔf=f∗Pt, where Pt(x)=(4πt)−2ne−4t∣x∣2. Prove the following: (a) ∥etΔ∥Lp→Lp≤1, ∀1≤p≤∞. (b) ∥etΔ∥L1→L∞≤C(n)t−2n, ∀t>0. (c) ∥etΔ∥Lp→Lq≤C(n)t−2n(p1−q1), ∀t>0.
Proof:
(a) By Hölder’s inequality, ∣etΔf(x)∣=∣∣∫Rnf(x−y)Pt(y)dy∣∣≤∥∥Ptpp−1∥∥Lp−1p∥∥f(x−⋅)Pt(⋅)p1∥∥Lp=(∫Rn∣f(x−y)∣pPt(y)dy)p1as ∥Pt∥L1=1. Then by Fubini’s theorem,∥etΔf(x)∥Lp≤(∫Rn∫Rn∣f(x−y)∣pPt(y)dydx)p1=(∫Rn(∫Rn∣f(x−y)∣pdx)Pt(y)dy)p1=∥f∥Lp.(b) For any x, we have ∣etΔf∣≤∥Pt∥L∞∥f∥L1=(4πt)−2n∥f∥L1. (c) The result follows from combining part (a) and (b), using the Riesz-Thorin interpolation theorem. Still, we present a direct proof.
By Hölder’s inequality,∣etΔf∣≤∫Rn∣f(x−y)∣α∣f(x−y)∣1−αPt(y)dy≤∥∣f∣α∥Lαp∥∣f(x−⋅)∣1−αPt(⋅)∥Lp−αp=∥f∥Lpα(∫Rn(∣f(x−y)∣1−αPt(y))p−αpdy)pp−α.And by Hölder’s inequality again,∫Rn(∣f(x−y)∣1−αPt(y))p−αpdy≤(∫Rn∣f(x−y)∣(1−α)qPt(y)p−αpdy)(p−α)qp(∫RnPt(y)p−αpdy)1−(p−α)qp.So we have∥etΔf∥Lq≤∥f∥Lpα(∫Rn(∫Rn(∣f(x−y)∣1−αPt(y))p−αpdy)p(p−α)qdx)q1≤∥f∥Lpα(∫Rn∫Rn∣f(x−y)∣(1−α)qPt(y)p−αpdydx)q1(∫RnPt(y)p−αpdy)pp−α−q1.Taking α=1−qp, we see that∥etΔf∥Lq≤∥f∥Lp(∫RnPt(y)1−p1+q11dy)1−p1+q1=C(n)t−2n(p1−q1)∥f∥Lp.
4.
For a semipositive matrix A∈Rn×n, define the function FA(x)=e−⟨Ax,x⟩ on Rn, which is bounded. Compute FA.
Proof:
For ε>0, the matrix A+εI is positive, hence nondegenerate. Then for all f∈S(Rn), we have
======⟨FA,f⟩∫RnFA(x)f^(x)dxε→0+lim∫Rne−⟨(A+εI)x,x⟩f^(x)dxε→0+lim∫Rn(e−⟨(A+εI)x,x⟩)∧f(x)dxε→0+lim∫Rnπ2ndet(A+εI)−21e−π2⟨(A+εI)−1x,x⟩f(x)dxε→0+lim∫Rnπ2ne−π2∣x∣2f((A+εI)21x)dx∫Rnπ2ne−π2∣x∣2f(A21x)dx.The second equality above is from the Lebesgue dominated convergence theorem, and the fifth from substituting x with (A+εI)21x. To verify the fourth, it suffices to consider the case when A+εI is a diagonal matrix after a rotation of x∈Rn, reducing matters to the multiplication of the R1 case: to be specific, the computation is (e−⟨(A+εI)x,x⟩)∧=(e−⟨D(Px),Px⟩)∧=(e−λ1x12−⋯−λnxn2)∧∘P=π2n(λ1⋯λn)−21e−π2(λ1−1x12+⋯+λn−1xn2)∘P=π2ndet(A+εI)−21e−π2⟨D−1x,x⟩∘P=π2ndet(A+εI)−21e−π2⟨(A+εI)−1x,x⟩,where A+εI=PTDP is the decomposition such that P is orthogonal and D is the diagonal matrix diag(λ1,⋯,λn).
Thus FA(x)=π2ne−π2x2δA21, where δA21f=f∘A21.