This just requires some tiny changes in the proof of the original theorem.
1.3.2.
Interpolating between L1 and Lr using Marcinkiewicz, we have ∥T∥L2p+1→L2p+1≤2(2p+1−12p+1+r−2p+12p+1)p1A01−r1p+12−r1A11−r11−p+12=2(p−1p+1+2r−p−1p+1)p1A0(r−1)(p+1)2r−p−1A1(p+1)(r−1)r(p−1).Then using Riesz–Thorin to interpolate between L2p+1 and Lr, we have ∥T∥Lp→Lp≤(2(p−1p+1+2r−p−1p+1)p1A0(r−1)(p+1)2r−p−1A1(p+1)(r−1)r(p−1))1−θA1θ,where θ=p(p+1−2r)r(1−p) by solving p1=p+12(1−θ)+rθ. Thus ∥T∥Lp→Lp≤2p(p+1−2r)(p−r)(1+p)(p−1p+1+2r−p−1p+1)p2(2r−p−1)(r−p)(p+1)A01−r1p1−r1A11−r11−p1.Now we come to estimate the constant. Note that p>1 implies p+1p>21, we have then 2r−p−1r−p<21. Thus p(p+1−2r)(p−r)(1+p)=p1+p2r−p−1r−p<2⋅21=1,p−1p+1+2r−p−1p+1<p−12(p+1).With these estimates, we have ∥T∥Lp→Lp<2(p−12(p+1))p1A01−r1p1−r1A11−r11−p1<8(p−1)−p1A01−r1p1−r1A11−r11−p1,with the use of 2(p+1)=4(2p−1+1)<4⋅e2p−1<4⋅4p−1=4p.
1.3.3.
(a)
It is a special case of (b). To be specific, take p0=1 in (b), then the norm becomes p1+p1[(p−1)p−1B(2,p−1)]p1A0p1A11−p1=p1+p1[Γ(p+1)(p−1)p−1Γ(2)Γ(p−1)]p1A0p1A11−p1=p1+p1[p(p−1)p1]p1A0p1A11−p1=p−1pA0p1A11−p1.
(b)
It suffices to study the case of f≥0 due to the assumption ∣T(f)∣≤T(∣f∣). For α>0, write f=f0+f1, where f0=(f−A1λα)χf≥A1λα, then we have the relation{∣T(f)∣>α}⫅{∣T(f0)∣>(1−λ)α}since∥T(f1)∥L∞≤∥T∥L∞→L∞∥f1∥L∞≤A1A1λα=λα.Thus ∥T(f)∥Lpp=p∫0∞αp−1dT(f)(α)dα≤p∫0∞αp−1dT(f0)((1−λ)α)dα≤(1−λ)p0pA0p0∫0∞αp−p0−1∥f0∥Lp0p0dα=(1−λ)p0pA0p0∫0∞αp−p0−1∫f≥A1λα(f−A1λα)p0dμdα=(1−λ)p0pA0p0∫X∫0λA1f(x)αp−p0−1(f−A1λα)p0dαdμ=(1−λ)p0λp−p0pA0p0A1p−p0∫X∫0f(x)αp−p0−1(f−α)p0dαdμ=(1−λ)p0λp−p0pA0p0A1p−p0B(p0+1,p−p0)∫X∣f∣pdμ=(1−λ)p0λp−p0pA0p0A1p−p0B(p0+1,p−p0)∥f∥Lpp.Now take λ=1−pp0 to end this proof.
(c)
Again, write f=f0+f1, where f0=(f−A1δα)χf≥A1δα. Thus ∥T(f)∥Lpp=p∫0∞αp−1dT(f)(α)dα≤p∫0∞αp−1dT(f0)((1−λ)α)dα+p∫0∞αp−1dT(f1)(λα)dα=(1−λ)p0pA0p0∫0∞ap−p0−1∥f0∥Lp0p0dα+λp1pA1p1∫0∞αp−p1−1∥f0∥Lp0p0dα=(1−λ)p0pA0p0∫0∞αp−p0−1∫f≥δα(f−δα)p0dα+λp1pA1p1∫0∞αp−p1−1(∫f≥δαδp1αp1dμ+∫f<δαfp1dμ)dα=(1−λ)p0pA0p0∫X∫0δf(x)αp−p0−1(f−δα)p0dαdμ+λp1pA1p1(∫X∫0δf(x)αp−1δp1dαdμ+∫X∫δf(x)∞αp−p1−1fp1dαdμ)=(1−λ)p0pA0p0∫X∫01(δfα)p−p0−1(f−fα)p0d(δfα)dμ+λp1pA1p1(δp1−p∫Xfpdμ+p1−pδp1−p∫Xfpdμ)=∥f∥Lpp((1−λ)p0δp−p0pA0p0B(p−p0,p0+1)+λp1pA1p1δp1−pp1−pp1−p−1).Now take δ such that δp−p0A0p0=δp−p1A1p1 and optimize over λ to end the estimate.
1.3.7.
Writef=k=0∑∞fχSk,where Sk={2k≤∣f∣<2k+1} when k>1 and S0={∣f∣<2}. Using Hölder’s inequality and the hypotheses on T, we obtain that ∫Y∣T(fχSk)∣dν≤(∫Ydν)k+11(∫Y∣Tf∣kk+1χSkdν)k+1k≤ν(Y)k+11A(kk+1−1)−α(∫Sk∣f∣kk+1dμ)k+1k≤2k+1ν(Y)k+11Akαμ(Sk)k+1k.If μ(Sk)≤3k+11, then 2k+1ν(Y)k+11Akαμ(Sk)k+1k≤2ν(Y)k+11Akα(32)k.If μ(Sk)≥3k+11, then ∫Y∣T(fχSk)∣dν≤ν(Y)k+11Akαμ(Sk)−k+11∫Sk∣f∣dμ≤3ν(Y)k+11A∫Sk∣f∣kαdμ≤3ν(Y)k+11A∫Sk∣f∣(log2+∣f∣)αdμ.For S0, we have ∫Y∣T(fχS0)∣dν≤(∫Ydν)21(∫Y∣T(fχS0)∣2dν)21≤ν(Y)21A⋅2μ(X)21.Add the three parts together and use the countable subadditivity of T, we then conclude that ∫Y∣T(f)∣dν≤k=0∑∞∫Y∣T(fχSk)∣dν≤6Amax(1,ν(Y))21[∫X∣f∣(log2+∣f∣)αdμ+k=1∑∞kα(32)k+μ(X)21]≤6A(1+ν(Y))21[∫X∣f∣(log2+∣f∣)αdμ+Cα+μ(X)21].
1.3.8.
Use the change of variables s=eπt∈(0,∞), and the first integral becomes 2sin(πx)∫−∞+∞cosh(πt)+cos(πx)1dt=sin(πx)∫0∞s+s−1+2cos(πx)1πsds=πsin(πx)∫0∞(s+cos(πx))2+sin2(πx)ds=π1∫0∞(sin(πx)s+cot(πx))2+1d(sin(πx)s)=π1∫cot(πx)∞u2+1du=x.For the second one, 2sin(πx)∫−∞+∞cosh(πt)−cos(πx)1dt=sin(πx)∫0∞s+s−1−2cos(πx)1πsds=πsin(πx)∫0∞(s−cos(πx))2+sin2(πx)ds=π1∫0∞(sin(πx)s−cot(πx))2+1d(sin(πx)s)=π1∫−cot(πx)∞u2+1du=1−x.
1.4 Lorentz Spaces
1.4.1.
(a)
Since ∫Agdμ=∫XgχAdμ=∫0∞(gχA)∗(t)dt=∫0μ(A)(gχA)∗(t)dt≤∫0μ(A)g∗(t)dt.
(b)
Since ∫X∣fg∣dμ=∫X∫0∞∫0∞χ{∣f∣≥s}χ{∣g∣≥t}dtdsdμ=∫X∫0∞∫0∞χ{∣f∣≥s}∩{∣g∣≥t}dtdsdμ=∫0∞∫0∞μ({∣f∣≥s}∩{∣g∣≥t})dtds≤∫0∞∫0∞min(μ({∣f∣≥s}),μ({∣g∣≥t}))dtds=∫0∞∫0∞min(μ({f∗≥s}),μ({g∗≥t}))dtds=∫0∞∫0∞∫0∞χ{f∗≥s}(u)χ{g∗≥t}(u)dudtds=∫0∞f∗(u)g∗(u)du.
1.4.2.
We omit the proof of the s=∞ case since Lp,∞(X)⊂Lp,q(X) always holds for 0<q<∞. Now for q1<∞ case, write γdf(γ)q01≤C1 and γdf(γ)q11≤C2. Since q∈(q0,q1), we may always find δ1∈(0,1) and δ2>1, such that q1=q0ri+q1δi−rifor each i=0,1 and some ri∈(0,δi). Thence we may continue our estimate as follows: ∫0∞(df(γ)q1γ)sγdγ=∫01(df(γ)q1γ)sγdγ+∫1∞(df(γ)q1γ)sγdγ≤∫01(γδ1C1r1C2δ1−r1γ)sγdγ+∫1γ(γδ2C1r2C2δ2−r2γ)sγdγ=s(1−δ1)C1r1C2δ1−r1+s(δ2−1)C1r2C2δ2−r2.Thus ∥f∥Lq,s≤qs1(s(1−δ1)C1r1C2δ1−r1+s(δ2−1)C1r2C2δ2−r2)s1.For the q1=∞ case, suppose ∣f∣≤C2 a.e., then df(γ)=0 for γ>C2. Then ∫0∞(df(γ)q1γ)sγdγ=∫0C2(df(γ)q1γ)sγdγ≤∫0C2(df(γ)q1γqq0γqq−q0)sγdγ≤∫0C2C1qsγqq(1−s)+q0sdγ=s(q−q0)qC1qsC2qs(q−q0).Thus ∥f∥Lq,s≤(s(q−q0)q2C1qsC2qs(q−q0))s1.
1.4.3.
(a)
For t<μ(X), we have ((f+g)∗∗(t))r=μ(E)≥tsupμ(E)1∫E∣f+g∣rdμ≤μ(E)≥tsupμ(E)1∫E∣f∣rdμ+μ(E)≥tsupμ(E)1∫E∣g∣rdμ=(f∗∗(t))r+(g∗∗(t))rsince r≤1. Otherwise, ((f+g)∗∗(t))r=t1∫X∣f+g∣r≤t1∫X∣f∣r+t1∫X∣g∣r=(f∗∗(t))r+(g∗∗(t))r.For the second part, since rq>1, we have ∣∣∣f+g∣∣∣Lp,qr=(∫0∞(tp1(f+g)∗∗(t))qtdt)qr=(∫0∞(tpr−qr((f+g)∗∗(t))r)rqtdt)qr≤(∫0∞(tpr−qr((f∗∗(t))r+(g∗∗(t))r))rqtdt)qr≤(∫0∞(tpr−qr(f∗∗(t))r)rqtdt)qr+(∫0∞(tpr−qr(g∗∗(t))r)rqtdt)qr=∣∣∣f∣∣∣Lp,qr+∣∣∣g∣∣∣Lp,qr.When r=1, we have the property of scalar multiplication, whence ∣∣∣⋅∣∣∣Lp,qr is a norm.
(b)
The first inequality holds since f∗(t)≤f∗∗(t). This is quite obvious when t≥μ(X), since f∗(t)=0 in this case. For t<μ(X), take s=f∗(t), then df(s)≤t. Then ∀ε>0, we have df(s−ε)>t by definition. Set E~:={∣f∣≥s−ε}, we have f∗∗(t)≥(E~1∫E~∣f∣rdμ)r1≥s−ε.Since ε is arbitrary, we have f∗∗(t)≥s=f∗(t).Thus ∣∣∣f∣∣∣Lp,q=(∫0∞(tp1f∗∗(t))qtdt)q1≥(∫0∞(tp1f∗(t))qtdt)q1=∥f∥Lp,q.For the second inequality, we may seek for a proof for f∗∗(t)≤(p−rp)r1f∗(t), but unfortunately this is untrue. (For t>μ(X), the right–hand side is definitely zero but unnecessarily for the left.) Note that the f∗∗ defined is controlled by (t1∫0t∣f∗(s)∣rds)r1. We just show the case of 0≤t≤μ(X). This is because μ(E)≥tsup(μ(E)1∫μ(E)∣f∣rdμ)r1=μ(E)≥tsup(μ(E)1∫μ(E)∣fχE∣rdμ)r1=μ(E)≥tsup(μ(E)1∫0μ(E)(fχE)∗(s)rds)r1≤μ(E)≥tsup(μ(E)1∫0μ(E)f∗(s)rds)r1≤decreasing(t1∫0tf∗(s)rds)r1.Thus, ∣∣∣f∣∣∣Lp,q≤(∫0∞(tp1(t1∫0t(f∗(t))rds)r1)qtdt)q1≤((∫0∞(t1∫0t(f∗(t))rds)rq)qtpq−rqtdt)qr)r1≤Hardy(pq−rqrq)r1(∫0∞(t(f∗(t))r)rqtpq−rqtdt)q1=(p−rp)r1∥f∥Lp,q.
(c)
When p,q>1, we may take r=1, then ∥⋅∥Lp,q will be equivalent to the norm ∣∣∣⋅∣∣∣Lp,q.
1.4.4.
(a)
Write f=∑n∈Zfχ(2n,2n+1] and fn=fχ(2n,2n+1]. Since γdf(γ)p1≤C<∞, we may fix a q<∞, then ∥fn∥Lp,qq=p∫0∞(γdfn(γ)p1)qγdγ≤p∫2n2n+1Cqγdγ=pCqlog2.Thus, for any fn, choose finitely combined simple functions ϕn,ε such that ∥fn−ϕn,ε∥Lp,q≤2∣n∣+1ε(qp)q1.Then the estimate follows that (for p>1, using the fact that Lp,∞ is actually metrizable) ∥f−n∈Z∑ϕn,ε∥Lp,∞≤n∈Z∑∥fn−ϕn,ε∥Lp,∞≤(pq)q1n∈Z∑2∣n∣+1ε(qp)q1<ε.For 0<p≤1, just take the power of r for some suitable 0<r<p described in [Ex.1.1.12], and make some necessary changes to get the same estimate.
(b)
Write s=∑i=1naiχAi and A=⋃i=1nAi. Set M=maxs=max1≤i≤nai, then we have {∣s−h∣>γ}⫆{h>γ+s}⫆{h>γ+M},which implies ∣∣∣s−h∣>γ∣∣≥∣∣h>γ+M∣∣=(γ+M)−p.For this reason, ∥s−h∥Lp,∞=γ>0supγ∣∣∣s−h∣>γ∣∣1/p≥γ>0supγ/(γ+M)=1.
1.4.10.
(a)
Take un=fnχ∣fn∣≤2α, vn=fnχ∣fn∣>2λnα and wn=fnχ2α<∣fn∣≤2λnα. Thus by setting u=∑nλnun, v=∑nλnvn and w=∑nλnwn, we obtain a decomposition f=u+v+w. Clearly ∣u∣≤2α. For v, we have μ({v=0})≤n∑μ(∣fn∣>2λnα)=n∑μ(∣λnfn∣>2α)≤n∑α2λn≤α2.Plus, for {∣w∣>2α}, we have 2αμ({∣w∣>2α})≤∫{∣w∣>2α}∣w∣dμ≤∫X∣w∣dμ≤n∑∫X∣fn∣χ2α<∣fn∣≤2λnαdμ≤n∑λn(∫2α2λnαdfn(t)dt+∫02αdfn(2α)dt)≤n∑λn(∫2α2λnαtdt+∫02αα2dt)≤n∑λn(log(λn)+1)≤K+1.Now combined together, we have μ({∣f∣>α})≤μ({∣u∣>2α})+μ({v=0})+μ({∣w∣>2α})≤0+α2+α2(K+1)=α2(K+2),which is exactly ∥f∥L1,∞≤2(K+2).
(b)
Since ∥Tf∥L1,∞=∥n∑λnTnf∥L1,∞≤2(K+2)nsup∥Tnf∥L1,∞≤2B(K+2)∥f∥L1.
(c)
Since μ({n=1∑∞2−δnfn>α})≤n=1∑∞μ({2−δnfn>(2ε−1)2−εnα})≤n=1∑∞(2ε−1)2−εnα2−δn=n=1∑∞(2ε−1)α2(ε−δ)n≤(2ε−1)α2δ−ε−1.
1.4.11.
First we show
(a)
(Fatou’s Lemma in Lp,q)
(b)
We know α>0supαdgn−g(α)s1≤(qs)s1∥gn−g∥Lq,sSince gn→Lq,sg, we have by this control that gn→g in measure. Now choose a subsequence gnk such that gnk→g a.e.
1.4.13.
(Dyadic Decomposition) Set cn=2pnf∗(2n), An:={f∗(2n+1)≤∣f∣≤f∗(2n)} and fn=cn−1fχAn. Obviously, we have f=∑n∈Zfn. Since f∗ is decreasing, we have ∣fn∣≤2−pnf∗(2n)−1f∗(2n)=2−pn.Clearly, support(fn)⊂An, whose measure is 2n. For the last matter, set En=[2n,2n+1]. Thus ∥f∥Lp,qq=∫0∞(tp1f∗(t))q1tdt=n∈Z∑∫En(tp1f∗(t))q1tdt≥n∈Z∑2pnqf∗(2n+1)q∫Entdt=log2n∈Z∑2p(n−1)qf∗(2n)q=2−pqlog2∥{ck}k∥lq,which is enough to show the boundedness of ∥{ck}k∥lq. Another direction follows from the estimate on each En that f∗(t)≤f∗(2n) and t≤2n+1 and use a shift.
1.4.14.
(a)
Take E′=E∩{∣f∣≤A(1−γ)−p1μ(E)−p1}, then df(A(1−γ)−p1μ(E)−p1)≤(1−γ)μ(E)by the definition of A. Thus ∣∣∫E′fdμ∣∣≤∫E′∣f∣dμ≤μ(E)A(1−γ)−p1μ(E)−p1=A(1−γ)−p1μ(E)1−p1.
(b)
Since {∣f∣>α}⊂{Ref>2α}∪{Ref<−2α}∪{Imf>2α}∪{Imf<−2α}=⋃i=14Fi, set En,i=Xn∩Fi, where {Xn} is an ascending chain of finite measure subspace with union equal to X. Then by condition, we have ∣∣∫En,i′fdμ∣∣≥2αγμ(En,i).Thus αμ(En)p1≤B2γ−1. Let n→∞, then αμ(Fi)p1≤B2γ−1. Thus, αpμ({∣f∣>α})≤i=1∑4αpμ(Fi)≤4Bp2pγ−p,which means ∥f∥Lp,∞≤B4p12γ−1.