参考资料
参考文献
[Barkan et al., 2024] | Barkan, S., Haugseng, R., and Steinebrunner, J. (2024). Envelopes for algebraic patterns. |
[Barkan and Steinebrunner, 2024] | Barkan, S. and Steinebrunner, J. (2024). The equifibered approach to -properads. |
[Boardman and Vogt, 1973] | Boardman, J. M. and Vogt, R. M. (1973). Homotopy Invariant Algebraic Structures on Topological Spaces. Springer Berlin Heidelberg. |
[Chen, 2024] | Chen, L. (2024). Fall 2024: Infinite category theory. https://windshower.github.io/linchen/teaching/f2024.html. |
[Chu and Haugseng, 2021] | Chu, H. and Haugseng, R. (2021). Homotopy-coherent algebra via segal conditions. Advances in Mathematics, 385:107733. |
[Chu and Haugseng, 2022] | Chu, H. and Haugseng, R. (2022). Free algebras through day convolution. Algebraic & Geometric Topology, 22(7):3401–3458. |
[Cisinski et al., ress] | Cisinski, D.-C., Cnossen, B., Nguyen, K., and Walde, T. (In Progress). Formalization of higher categories. https://drive.google.com/file/d/1lKaq7watGGl3xvjqw9qHjm6SDPFJ2-0o/view. |
[Cnossen, 2025] | Cnossen, B. (2025). Introduction to stable homotopy theory. https://sites.google.com/view/bastiaan-cnossen/teaching/wi24-introduction-to-stable-homotopy-theory. |
[Haugseng, 2023] | Haugseng, R. (2023). An allegedly somewhat friendly introduction to -operads. https://runegha.folk.ntnu.no/iopd.pdf. |
[Hebestreit, 2021] | Hebestreit, F. (2021). Algebraic and hermitian -theory. https://florianadler.github.io/AlgebraBonn/KTheory.pdf. |
[Hebestreit and Steinebrunner, 2025] | Hebestreit, F. and Steinebrunner, J. (2025). A short proof that rezk’s nerve is fully faithful. International Mathematics Research Notices, 2025(4):rnaf021. |
[Heyer and Mann, 2024] | Heyer, C. and Mann, L. (2024). 6-functor formalisms and smooth representations. |
[Lurie, 2017] | Lurie, J. (2017). Higher algebra. https://www.math.ias.edu/ lurie/papers/HA.pdf. |
[May, 1972] | May, J. P. (1972). The Geometry of Iterated Loop Spaces. Springer Berlin Heidelberg. |