48. 按前二列展开行列式
本节, 我想证明一个公式. 它在交错性的一个证明与反称性的一个证明里有用.
定理 48.1. 设 A 是 n 级阵 (n⩾2). 则det(A)=1⩽i<k⩽n∑det[[A]i,1[A]k,1[A]i,2[A]k,2](−1)i+k+1+2det(A(i,k∣1,2)).
证. 注意, 当 d2=d1 时, [A]d2,2 是 A(d1∣1) 的 (d2−ρ(d2,d1),1)-元. 从而=========det(A)d1=1∑n(−1)d1+1[A]d1,1det(A(d1∣1))d1=1∑n(−1)d1+1[A]d1,11⩽d2⩽nd2=d1∑(−1)d2−ρ(d2,d1)+1[A]d2,2det(A(d1,d2∣1,2))d1=1∑n1⩽d2⩽nd2=d1∑(−1)d1+1[A]d1,1(−1)d2−ρ(d2,d1)+1[A]d2,2det(A(d1,d2∣1,2))1⩽d1,d2⩽nd1=d2∑(−1)d1+1[A]d1,1(−1)d2−ρ(d2,d1)+1[A]d2,2det(A(d1,d2∣1,2))1⩽d1,d2⩽nd1=d2∑(−1)ρ(d1,d2)[A]d1,1[A]d2,2(−1)d1+d2+1+2det(A(d1,d2∣1,2))+1⩽d1,d2⩽nd1<d2∑(−1)ρ(d1,d2)[A]d1,1[A]d2,2(−1)d1+d2+1+2det(A(d1,d2∣1,2))+1⩽d1,d2⩽nd1>d2∑(−1)ρ(d1,d2)[A]d1,1[A]d2,2(−1)d1+d2+1+2det(A(d1,d2∣1,2))+1⩽i,k⩽ni<k∑(−1)ρ(i,k)[A]i,1[A]k,2(−1)i+k+1+2det(A(i,k∣1,2))+1⩽k,i⩽nk>i∑(−1)ρ(k,i)[A]k,1[A]i,2(−1)k+i+1+2det(A(k,i∣1,2))1⩽i<k⩽n∑([A]i,1[A]k,2−[A]k,1[A]i,2)(−1)i+k+1+2det(A(i,k∣1,2))1⩽i<k⩽n∑det[[A]i,1[A]k,1[A]i,2[A]k,2](−1)i+k+1+2det(A(i,k∣1,2)).
证毕.