循环群
循环群是由一个元素生成的群. 循环群分为以下两种 (定理 2.1):
• | 无限循环群 . |
• | 有限循环群 , 其中 是正整数. 该群有时也记为 , 前提是不与 进整数的记号混淆. |
1定义
定义 1.1. 称群 为循环群, 如果存在 , 使得
2性质
分类
定理 2.1. 循环群一定同构于下列之一:
• | 无限循环群 . |
• | 有限循环群 , 其中 是正整数. |
子群
(…)
3相关概念
• | |
• |
术语翻译
循环群 • 英文 cyclic group • 德文 zyklische Gruppe (f) • 法文 groupe cyclique (m) • 拉丁文 caterva cyclica (f) • 古希腊文 κυκλικὴ ὁμάς (f)