讲义: 筛法
本讲义旨在按历史发展的顺序将解析数论中的经典筛法向读者呈现出来, 并证明 Goldbach 猜想研究中的划时代结论:
定理 0.1 (陈景润). 每个大偶数都是一个素数与一个不超过两个素数的乘积之和. 存在无穷个素数 使 为不超过两个素数的乘积.
作者: 刘子灏
目录
1相关链接
• | |
• | |
• |
参考文献
[1] | Ankeny, N., & Onishi, H. (1964). The general sieve. Acta Arith., 10(1), 31–62. https://doi.org/10.4064/aa-10-1-31-62 |
[2] | Brun, V. (1920). Le crible d’Eratosthene et le theoreme de Goldbach. Skr. Norske Vid. Akad, 3, 1–36. |
[3] | Buchstab, A. (1938). Neue Verbesserungen in der Methode des Eratosthenischen Siebes. Mat. Sbornik, 46(2), 375–387. |
[4] | Davenport, H. (1980). Multiplicative Number Theory (Vol. 74). Springer New York. https://doi.org/10.1007/978-1-4757-5927-3 |
[5] | Diamond, H. G., Halberstam, H., & Galway, W. F. (2008). A Higher-Dimensional Sieve Method. Cambridge University Press. https://doi.org/10.1017/CBO9780511542909 |
[6] | Friedlander, J. B., & Iwaniec, H. (2010). Opera de cribro. American Mathematical Society. |
[7] | Halberstam, H., & Richert, H.-E. (1974). Sieve methods. Academic Press. |
[8] | Iwaniec, H. (1996). Sieve methods. Unpublished lecture notes. |
[9] | Montgomery, H. L. (1978). The analytic principle of the large sieve. Bull. Amer. Math. Soc., 84(4), 547–568. https://doi.org/10.1090/S0002-9904-1978-14497-8 |
[10] | 潘承洞, 王元, & 丁夏畦. (1975). On the representation of every large even integer as a sum of a prime and an almost prime. Scientia Sinica, 18(5), 599–610. |
[11] | Rademacher, H. (1924). Beiträge zur viggo brunschen methode in der zahlentheorie. Abh. Math. Semin. Univ. Hambg., 3(1), 12–30. https://doi.org/10.1007/BF02954614 |
[12] | Selberg, A. (1942). On the zeros of Riemann’s zeta-function. Skr. Norske Vid. Akad, 10. |
[13] | Selberg, A. (1947). On an Elementary Method in the Theory of Primes. Norske Vid. Selsk. Forh. Trondhjem., 19, 64–67. |
[14] | Shapiro, H. N., & Warga, J. (1950). On the representation of large integers as sums of primes. Part I. Comm. Pure Appl. Math., 3(2), 153–176. https://doi.org/10.1002/cpa.3160030204 |
[15] | Titchmarsh, E. C. (1930). A divisor problem. Rend. Circ. Mat. Palermo, 54, 414–429. |
[16] | 王元. (1956). 表大偶數為一個不超過三個素數的乘積及一個不超過四個素數的乘積之和. 数学学报, 6(3), 500–513. |
[17] | 王元. (1956). 表大偶數為一個素數及一個不超過四個素數的乘積之和——廣義 Riemann 猜測下之結果. 数学学报, 6(4), 565–582. |
[18] | 王元. (1958). 论筛法及其有关的若干应用 (I)——表大整数为殆素数之和. 数学学报, 8(3), 413–429. |
[19] | 王元. (1962). On the representation of large integer as a sum of a prime and an almost prime. Scientia Sinica, 11(8), 1033–1054. |
[20] | 王元 (Ed.). (2002). The Goldbach conjecture (2nd ed). World Scientific. |