用户: 遗忘的左伴随/代数几何
[作者] 刘欧
本笔记为笔者学习代数几何 (其实是概形论) 时所写笔记, 较为潦草, 有错漏或不足之处, 敬请指正.
笔记打算在写上同调的阶段顺便把平展上同调的部分内容写完 (笔者认为上同调阶段直接切入景上层的上同调 (即意象上同调) 是自然且合理的), 因此本笔记可以作为平展上同调笔记在香蕉空间中的平替.
此外, 本笔记延续平展笔记风格, 分为内篇与外篇, 内篇讲述基本的代数几何以及平展上同调理论, 外篇讲述较为现代的理论.
笔记可能作为山西大学代数几何讨论班的讲义 (不过极大可能咕咕咕不开)
目录
序章 为什么要研究代数几何? | |
5 前面的世界, 让我先咕一会. | |
原无穷范畴 六函子预备知识 (字数过多导致编译错误, 已转至 overleaf, 以及后文单开 inf 部分) | |
参考文献
[代数与同调代数参考] | |
[李文威卷一] | 李文威. (2018). 代数学方法 (卷一) 基础架构. 北京: 高等教育出版社 |
[李文威卷二] | 李文威. (2022). 代数学方法 (卷二) 线性代数. |
[代数几何部分参考] | |
[Hartshorne] | Hartshorne, R. (2013). Algebraic geometry (Vol. 52). Springer Science & Business Media. |
[Görtz I] | Görtz, U., & Wedhorn, T. (2010). Algebraic Geometry I: Schemes. Vieweg+ Teubner. |
[Görtz II] | Görtz, U., & Wedhorn, T. (2023). Algebraic Geometry II: Cohomology of Schemes. |
[Scholze] | Scholze, P. (2016). Algebraic Geometry I. Lecture Note typed by Davies, J. |
[扶磊] | 扶磊. (2006). Algebraic Geometry. Tsinghua University Press. |
[平展上同调参考] | |
[扶磊 Étale] | Fu, L. (2011). Etale cohomology theory (Vol. 13). World Scientific. |
[milneLEC] | James S. Milne. (2013). Lectures on étale cohomology. |
[milne80] | James S. Milne. (1980). Étale Cohomology. Princeton university press. |
[SGA-IV] | Alexander Grothendieck, Micheal Artin, and J.-L. Verdier. (1972). Théorie des Topos et Cohomologie Etale des Schémas (SGA 4). Tome 2. Springer-Verlag. |
[SGA-I] | Alexander Grothendieck and Michele Raynaud. (1971). Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag |
[FGAExplained] | Books, M. P., Bookshelf, M., & Copied, S. (2005). Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical surveys and monographs, 123, 339. |
[外篇内容参考] | |
[BS13] | Bhargav Bhatt and Peter Scholze. (2013). The pro-étale topology for schemes. Preprint. |
[SixFunctors] | Peter Scholze (2022). Six Functor Formalisms. lecture notes. |
[Ma22] | Mann, L. (2022). A -Adic 6-Functor Formalism in Rigid-Analytic Geometry. arXiv preprint arXiv:2206.02022. |
[LZ12a] | Liu, Y., & Zheng, W. (2012). Enhanced six operations and base change theorem for higher Artin stacks. arXiv preprint arXiv:1211.5948. |
[HTT] | Lurie, J. (2009). Higher topos theory. Princeton University Press. |
[HA] | Lurie, J. (2017). Higher Algebra. |
[Kerodon] | Lurie, J. (2018). Kerdon. |
[Land] | Land, M. (2021). Introduction to Infinity-categories. Springer Nature. |
[卜辰璟] | 卜辰璟. (2019). 讲义: 同伦代数与同调代数. 香蕉空间. |
[温尊] | 温尊. (2023). 讲义: 给几何人的平展上同调. 香蕉空间. |
[Münster] | Krause, A. & Nikolau, T. (2020). -Categories and Higher Algebra. Homotopy Theory Münster. YouTube. |
[JOYAL2002207] | Joyal, A. (2002). Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra, 175(1-3), 207-222. |
[StacksProject] | Stacks project collaborators. (2018). Stacks Project |